Whakaoti mō x
x=\frac{\sqrt{35}}{5}+1\approx 2.183215957
x=-\frac{\sqrt{35}}{5}+1\approx -0.183215957
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x^{2}-10x-2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 5\left(-2\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -10 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 5\left(-2\right)}}{2\times 5}
Pūrua -10.
x=\frac{-\left(-10\right)±\sqrt{100-20\left(-2\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-10\right)±\sqrt{100+40}}{2\times 5}
Whakareatia -20 ki te -2.
x=\frac{-\left(-10\right)±\sqrt{140}}{2\times 5}
Tāpiri 100 ki te 40.
x=\frac{-\left(-10\right)±2\sqrt{35}}{2\times 5}
Tuhia te pūtakerua o te 140.
x=\frac{10±2\sqrt{35}}{2\times 5}
Ko te tauaro o -10 ko 10.
x=\frac{10±2\sqrt{35}}{10}
Whakareatia 2 ki te 5.
x=\frac{2\sqrt{35}+10}{10}
Nā, me whakaoti te whārite x=\frac{10±2\sqrt{35}}{10} ina he tāpiri te ±. Tāpiri 10 ki te 2\sqrt{35}.
x=\frac{\sqrt{35}}{5}+1
Whakawehe 10+2\sqrt{35} ki te 10.
x=\frac{10-2\sqrt{35}}{10}
Nā, me whakaoti te whārite x=\frac{10±2\sqrt{35}}{10} ina he tango te ±. Tango 2\sqrt{35} mai i 10.
x=-\frac{\sqrt{35}}{5}+1
Whakawehe 10-2\sqrt{35} ki te 10.
x=\frac{\sqrt{35}}{5}+1 x=-\frac{\sqrt{35}}{5}+1
Kua oti te whārite te whakatau.
5x^{2}-10x-2=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}-10x-2-\left(-2\right)=-\left(-2\right)
Me tāpiri 2 ki ngā taha e rua o te whārite.
5x^{2}-10x=-\left(-2\right)
Mā te tango i te -2 i a ia ake anō ka toe ko te 0.
5x^{2}-10x=2
Tango -2 mai i 0.
\frac{5x^{2}-10x}{5}=\frac{2}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\left(-\frac{10}{5}\right)x=\frac{2}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-2x=\frac{2}{5}
Whakawehe -10 ki te 5.
x^{2}-2x+1=\frac{2}{5}+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=\frac{7}{5}
Tāpiri \frac{2}{5} ki te 1.
\left(x-1\right)^{2}=\frac{7}{5}
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{7}{5}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=\frac{\sqrt{35}}{5} x-1=-\frac{\sqrt{35}}{5}
Whakarūnātia.
x=\frac{\sqrt{35}}{5}+1 x=-\frac{\sqrt{35}}{5}+1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}