Whakaoti mō x
x=\frac{4}{5}=0.8
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x^{2}-8x=-\frac{16}{5}
Tangohia te 8x mai i ngā taha e rua.
5x^{2}-8x+\frac{16}{5}=0
Me tāpiri te \frac{16}{5} ki ngā taha e rua.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 5\times \frac{16}{5}}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -8 mō b, me \frac{16}{5} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 5\times \frac{16}{5}}}{2\times 5}
Pūrua -8.
x=\frac{-\left(-8\right)±\sqrt{64-20\times \frac{16}{5}}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2\times 5}
Whakareatia -20 ki te \frac{16}{5}.
x=\frac{-\left(-8\right)±\sqrt{0}}{2\times 5}
Tāpiri 64 ki te -64.
x=-\frac{-8}{2\times 5}
Tuhia te pūtakerua o te 0.
x=\frac{8}{2\times 5}
Ko te tauaro o -8 ko 8.
x=\frac{8}{10}
Whakareatia 2 ki te 5.
x=\frac{4}{5}
Whakahekea te hautanga \frac{8}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
5x^{2}-8x=-\frac{16}{5}
Tangohia te 8x mai i ngā taha e rua.
\frac{5x^{2}-8x}{5}=-\frac{\frac{16}{5}}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}-\frac{8}{5}x=-\frac{\frac{16}{5}}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-\frac{8}{5}x=-\frac{16}{25}
Whakawehe -\frac{16}{5} ki te 5.
x^{2}-\frac{8}{5}x+\left(-\frac{4}{5}\right)^{2}=-\frac{16}{25}+\left(-\frac{4}{5}\right)^{2}
Whakawehea te -\frac{8}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{4}{5}. Nā, tāpiria te pūrua o te -\frac{4}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{8}{5}x+\frac{16}{25}=\frac{-16+16}{25}
Pūruatia -\frac{4}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{8}{5}x+\frac{16}{25}=0
Tāpiri -\frac{16}{25} ki te \frac{16}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{4}{5}\right)^{2}=0
Tauwehea x^{2}-\frac{8}{5}x+\frac{16}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{5}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{4}{5}=0 x-\frac{4}{5}=0
Whakarūnātia.
x=\frac{4}{5} x=\frac{4}{5}
Me tāpiri \frac{4}{5} ki ngā taha e rua o te whārite.
x=\frac{4}{5}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}