Whakaoti mō x
x=\sqrt{17}+4\approx 8.123105626
x=4-\sqrt{17}\approx -0.123105626
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x^{2}-40x=5
Tangohia te 40x mai i ngā taha e rua.
5x^{2}-40x-5=0
Tangohia te 5 mai i ngā taha e rua.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 5\left(-5\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -40 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 5\left(-5\right)}}{2\times 5}
Pūrua -40.
x=\frac{-\left(-40\right)±\sqrt{1600-20\left(-5\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-40\right)±\sqrt{1600+100}}{2\times 5}
Whakareatia -20 ki te -5.
x=\frac{-\left(-40\right)±\sqrt{1700}}{2\times 5}
Tāpiri 1600 ki te 100.
x=\frac{-\left(-40\right)±10\sqrt{17}}{2\times 5}
Tuhia te pūtakerua o te 1700.
x=\frac{40±10\sqrt{17}}{2\times 5}
Ko te tauaro o -40 ko 40.
x=\frac{40±10\sqrt{17}}{10}
Whakareatia 2 ki te 5.
x=\frac{10\sqrt{17}+40}{10}
Nā, me whakaoti te whārite x=\frac{40±10\sqrt{17}}{10} ina he tāpiri te ±. Tāpiri 40 ki te 10\sqrt{17}.
x=\sqrt{17}+4
Whakawehe 40+10\sqrt{17} ki te 10.
x=\frac{40-10\sqrt{17}}{10}
Nā, me whakaoti te whārite x=\frac{40±10\sqrt{17}}{10} ina he tango te ±. Tango 10\sqrt{17} mai i 40.
x=4-\sqrt{17}
Whakawehe 40-10\sqrt{17} ki te 10.
x=\sqrt{17}+4 x=4-\sqrt{17}
Kua oti te whārite te whakatau.
5x^{2}-40x=5
Tangohia te 40x mai i ngā taha e rua.
\frac{5x^{2}-40x}{5}=\frac{5}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\left(-\frac{40}{5}\right)x=\frac{5}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-8x=\frac{5}{5}
Whakawehe -40 ki te 5.
x^{2}-8x=1
Whakawehe 5 ki te 5.
x^{2}-8x+\left(-4\right)^{2}=1+\left(-4\right)^{2}
Whakawehea te -8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -4. Nā, tāpiria te pūrua o te -4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-8x+16=1+16
Pūrua -4.
x^{2}-8x+16=17
Tāpiri 1 ki te 16.
\left(x-4\right)^{2}=17
Tauwehea x^{2}-8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{17}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-4=\sqrt{17} x-4=-\sqrt{17}
Whakarūnātia.
x=\sqrt{17}+4 x=4-\sqrt{17}
Me tāpiri 4 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}