Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}=\frac{245}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}=49
Whakawehea te 245 ki te 5, kia riro ko 49.
x^{2}-49=0
Tangohia te 49 mai i ngā taha e rua.
\left(x-7\right)\left(x+7\right)=0
Whakaarohia te x^{2}-49. Tuhia anō te x^{2}-49 hei x^{2}-7^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=7 x=-7
Hei kimi otinga whārite, me whakaoti te x-7=0 me te x+7=0.
x^{2}=\frac{245}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}=49
Whakawehea te 245 ki te 5, kia riro ko 49.
x=7 x=-7
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}=\frac{245}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}=49
Whakawehea te 245 ki te 5, kia riro ko 49.
x^{2}-49=0
Tangohia te 49 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-49\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -49 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-49\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{196}}{2}
Whakareatia -4 ki te -49.
x=\frac{0±14}{2}
Tuhia te pūtakerua o te 196.
x=7
Nā, me whakaoti te whārite x=\frac{0±14}{2} ina he tāpiri te ±. Whakawehe 14 ki te 2.
x=-7
Nā, me whakaoti te whārite x=\frac{0±14}{2} ina he tango te ±. Whakawehe -14 ki te 2.
x=7 x=-7
Kua oti te whārite te whakatau.