Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x^{2}+9x=-6
Me tāpiri te 9x ki ngā taha e rua.
5x^{2}+9x+6=0
Me tāpiri te 6 ki ngā taha e rua.
x=\frac{-9±\sqrt{9^{2}-4\times 5\times 6}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 9 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\times 5\times 6}}{2\times 5}
Pūrua 9.
x=\frac{-9±\sqrt{81-20\times 6}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-9±\sqrt{81-120}}{2\times 5}
Whakareatia -20 ki te 6.
x=\frac{-9±\sqrt{-39}}{2\times 5}
Tāpiri 81 ki te -120.
x=\frac{-9±\sqrt{39}i}{2\times 5}
Tuhia te pūtakerua o te -39.
x=\frac{-9±\sqrt{39}i}{10}
Whakareatia 2 ki te 5.
x=\frac{-9+\sqrt{39}i}{10}
Nā, me whakaoti te whārite x=\frac{-9±\sqrt{39}i}{10} ina he tāpiri te ±. Tāpiri -9 ki te i\sqrt{39}.
x=\frac{-\sqrt{39}i-9}{10}
Nā, me whakaoti te whārite x=\frac{-9±\sqrt{39}i}{10} ina he tango te ±. Tango i\sqrt{39} mai i -9.
x=\frac{-9+\sqrt{39}i}{10} x=\frac{-\sqrt{39}i-9}{10}
Kua oti te whārite te whakatau.
5x^{2}+9x=-6
Me tāpiri te 9x ki ngā taha e rua.
\frac{5x^{2}+9x}{5}=-\frac{6}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\frac{9}{5}x=-\frac{6}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}+\frac{9}{5}x+\left(\frac{9}{10}\right)^{2}=-\frac{6}{5}+\left(\frac{9}{10}\right)^{2}
Whakawehea te \frac{9}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{9}{10}. Nā, tāpiria te pūrua o te \frac{9}{10} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{9}{5}x+\frac{81}{100}=-\frac{6}{5}+\frac{81}{100}
Pūruatia \frac{9}{10} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{9}{5}x+\frac{81}{100}=-\frac{39}{100}
Tāpiri -\frac{6}{5} ki te \frac{81}{100} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{9}{10}\right)^{2}=-\frac{39}{100}
Tauwehea x^{2}+\frac{9}{5}x+\frac{81}{100}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{10}\right)^{2}}=\sqrt{-\frac{39}{100}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{9}{10}=\frac{\sqrt{39}i}{10} x+\frac{9}{10}=-\frac{\sqrt{39}i}{10}
Whakarūnātia.
x=\frac{-9+\sqrt{39}i}{10} x=\frac{-\sqrt{39}i-9}{10}
Me tango \frac{9}{10} mai i ngā taha e rua o te whārite.