Whakaoti mō x
x=-15
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\left(5x+75\right)=0
Tauwehea te x.
x=0 x=-15
Hei kimi otinga whārite, me whakaoti te x=0 me te 5x+75=0.
5x^{2}+75x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-75±\sqrt{75^{2}}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 75 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-75±75}{2\times 5}
Tuhia te pūtakerua o te 75^{2}.
x=\frac{-75±75}{10}
Whakareatia 2 ki te 5.
x=\frac{0}{10}
Nā, me whakaoti te whārite x=\frac{-75±75}{10} ina he tāpiri te ±. Tāpiri -75 ki te 75.
x=0
Whakawehe 0 ki te 10.
x=-\frac{150}{10}
Nā, me whakaoti te whārite x=\frac{-75±75}{10} ina he tango te ±. Tango 75 mai i -75.
x=-15
Whakawehe -150 ki te 10.
x=0 x=-15
Kua oti te whārite te whakatau.
5x^{2}+75x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{5x^{2}+75x}{5}=\frac{0}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\frac{75}{5}x=\frac{0}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}+15x=\frac{0}{5}
Whakawehe 75 ki te 5.
x^{2}+15x=0
Whakawehe 0 ki te 5.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=\left(\frac{15}{2}\right)^{2}
Whakawehea te 15, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{15}{2}. Nā, tāpiria te pūrua o te \frac{15}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+15x+\frac{225}{4}=\frac{225}{4}
Pūruatia \frac{15}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{15}{2}\right)^{2}=\frac{225}{4}
Tauwehea x^{2}+15x+\frac{225}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{15}{2}=\frac{15}{2} x+\frac{15}{2}=-\frac{15}{2}
Whakarūnātia.
x=0 x=-15
Me tango \frac{15}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}