Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+12x+36=0
Whakawehea ngā taha e rua ki te 5.
a+b=12 ab=1\times 36=36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+36. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,36 2,18 3,12 4,9 6,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Tātaihia te tapeke mō ia takirua.
a=6 b=6
Ko te otinga te takirua ka hoatu i te tapeke 12.
\left(x^{2}+6x\right)+\left(6x+36\right)
Tuhia anō te x^{2}+12x+36 hei \left(x^{2}+6x\right)+\left(6x+36\right).
x\left(x+6\right)+6\left(x+6\right)
Tauwehea te x i te tuatahi me te 6 i te rōpū tuarua.
\left(x+6\right)\left(x+6\right)
Whakatauwehea atu te kīanga pātahi x+6 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(x+6\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=-6
Hei kimi i te otinga whārite, whakaotia te x+6=0.
5x^{2}+60x+180=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-60±\sqrt{60^{2}-4\times 5\times 180}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 60 mō b, me 180 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\times 5\times 180}}{2\times 5}
Pūrua 60.
x=\frac{-60±\sqrt{3600-20\times 180}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-60±\sqrt{3600-3600}}{2\times 5}
Whakareatia -20 ki te 180.
x=\frac{-60±\sqrt{0}}{2\times 5}
Tāpiri 3600 ki te -3600.
x=-\frac{60}{2\times 5}
Tuhia te pūtakerua o te 0.
x=-\frac{60}{10}
Whakareatia 2 ki te 5.
x=-6
Whakawehe -60 ki te 10.
5x^{2}+60x+180=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}+60x+180-180=-180
Me tango 180 mai i ngā taha e rua o te whārite.
5x^{2}+60x=-180
Mā te tango i te 180 i a ia ake anō ka toe ko te 0.
\frac{5x^{2}+60x}{5}=-\frac{180}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\frac{60}{5}x=-\frac{180}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}+12x=-\frac{180}{5}
Whakawehe 60 ki te 5.
x^{2}+12x=-36
Whakawehe -180 ki te 5.
x^{2}+12x+6^{2}=-36+6^{2}
Whakawehea te 12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 6. Nā, tāpiria te pūrua o te 6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+12x+36=-36+36
Pūrua 6.
x^{2}+12x+36=0
Tāpiri -36 ki te 36.
\left(x+6\right)^{2}=0
Tauwehea x^{2}+12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+6=0 x+6=0
Whakarūnātia.
x=-6 x=-6
Me tango 6 mai i ngā taha e rua o te whārite.
x=-6
Kua oti te whārite te whakatau. He ōrite ngā whakatau.