Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x^{2}+6x+10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6±\sqrt{6^{2}-4\times 5\times 10}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 6 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 5\times 10}}{2\times 5}
Pūrua 6.
x=\frac{-6±\sqrt{36-20\times 10}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-6±\sqrt{36-200}}{2\times 5}
Whakareatia -20 ki te 10.
x=\frac{-6±\sqrt{-164}}{2\times 5}
Tāpiri 36 ki te -200.
x=\frac{-6±2\sqrt{41}i}{2\times 5}
Tuhia te pūtakerua o te -164.
x=\frac{-6±2\sqrt{41}i}{10}
Whakareatia 2 ki te 5.
x=\frac{-6+2\sqrt{41}i}{10}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{41}i}{10} ina he tāpiri te ±. Tāpiri -6 ki te 2i\sqrt{41}.
x=\frac{-3+\sqrt{41}i}{5}
Whakawehe -6+2i\sqrt{41} ki te 10.
x=\frac{-2\sqrt{41}i-6}{10}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{41}i}{10} ina he tango te ±. Tango 2i\sqrt{41} mai i -6.
x=\frac{-\sqrt{41}i-3}{5}
Whakawehe -6-2i\sqrt{41} ki te 10.
x=\frac{-3+\sqrt{41}i}{5} x=\frac{-\sqrt{41}i-3}{5}
Kua oti te whārite te whakatau.
5x^{2}+6x+10=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}+6x+10-10=-10
Me tango 10 mai i ngā taha e rua o te whārite.
5x^{2}+6x=-10
Mā te tango i te 10 i a ia ake anō ka toe ko te 0.
\frac{5x^{2}+6x}{5}=-\frac{10}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\frac{6}{5}x=-\frac{10}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}+\frac{6}{5}x=-2
Whakawehe -10 ki te 5.
x^{2}+\frac{6}{5}x+\left(\frac{3}{5}\right)^{2}=-2+\left(\frac{3}{5}\right)^{2}
Whakawehea te \frac{6}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{5}. Nā, tāpiria te pūrua o te \frac{3}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{6}{5}x+\frac{9}{25}=-2+\frac{9}{25}
Pūruatia \frac{3}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{6}{5}x+\frac{9}{25}=-\frac{41}{25}
Tāpiri -2 ki te \frac{9}{25}.
\left(x+\frac{3}{5}\right)^{2}=-\frac{41}{25}
Tauwehea x^{2}+\frac{6}{5}x+\frac{9}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{5}\right)^{2}}=\sqrt{-\frac{41}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{5}=\frac{\sqrt{41}i}{5} x+\frac{3}{5}=-\frac{\sqrt{41}i}{5}
Whakarūnātia.
x=\frac{-3+\sqrt{41}i}{5} x=\frac{-\sqrt{41}i-3}{5}
Me tango \frac{3}{5} mai i ngā taha e rua o te whārite.