Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x^{2}+3x=17
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
5x^{2}+3x-17=17-17
Me tango 17 mai i ngā taha e rua o te whārite.
5x^{2}+3x-17=0
Mā te tango i te 17 i a ia ake anō ka toe ko te 0.
x=\frac{-3±\sqrt{3^{2}-4\times 5\left(-17\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 3 mō b, me -17 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 5\left(-17\right)}}{2\times 5}
Pūrua 3.
x=\frac{-3±\sqrt{9-20\left(-17\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-3±\sqrt{9+340}}{2\times 5}
Whakareatia -20 ki te -17.
x=\frac{-3±\sqrt{349}}{2\times 5}
Tāpiri 9 ki te 340.
x=\frac{-3±\sqrt{349}}{10}
Whakareatia 2 ki te 5.
x=\frac{\sqrt{349}-3}{10}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{349}}{10} ina he tāpiri te ±. Tāpiri -3 ki te \sqrt{349}.
x=\frac{-\sqrt{349}-3}{10}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{349}}{10} ina he tango te ±. Tango \sqrt{349} mai i -3.
x=\frac{\sqrt{349}-3}{10} x=\frac{-\sqrt{349}-3}{10}
Kua oti te whārite te whakatau.
5x^{2}+3x=17
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{5x^{2}+3x}{5}=\frac{17}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\frac{3}{5}x=\frac{17}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}+\frac{3}{5}x+\left(\frac{3}{10}\right)^{2}=\frac{17}{5}+\left(\frac{3}{10}\right)^{2}
Whakawehea te \frac{3}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{10}. Nā, tāpiria te pūrua o te \frac{3}{10} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{3}{5}x+\frac{9}{100}=\frac{17}{5}+\frac{9}{100}
Pūruatia \frac{3}{10} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{3}{5}x+\frac{9}{100}=\frac{349}{100}
Tāpiri \frac{17}{5} ki te \frac{9}{100} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{3}{10}\right)^{2}=\frac{349}{100}
Tauwehea x^{2}+\frac{3}{5}x+\frac{9}{100}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{10}\right)^{2}}=\sqrt{\frac{349}{100}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{10}=\frac{\sqrt{349}}{10} x+\frac{3}{10}=-\frac{\sqrt{349}}{10}
Whakarūnātia.
x=\frac{\sqrt{349}-3}{10} x=\frac{-\sqrt{349}-3}{10}
Me tango \frac{3}{10} mai i ngā taha e rua o te whārite.