Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x^{2}=6-27
Tangohia te 27 mai i ngā taha e rua.
5x^{2}=-21
Tangohia te 27 i te 6, ka -21.
x^{2}=-\frac{21}{5}
Whakawehea ngā taha e rua ki te 5.
x=\frac{\sqrt{105}i}{5} x=-\frac{\sqrt{105}i}{5}
Kua oti te whārite te whakatau.
5x^{2}+27-6=0
Tangohia te 6 mai i ngā taha e rua.
5x^{2}+21=0
Tangohia te 6 i te 27, ka 21.
x=\frac{0±\sqrt{0^{2}-4\times 5\times 21}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 0 mō b, me 21 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 5\times 21}}{2\times 5}
Pūrua 0.
x=\frac{0±\sqrt{-20\times 21}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{0±\sqrt{-420}}{2\times 5}
Whakareatia -20 ki te 21.
x=\frac{0±2\sqrt{105}i}{2\times 5}
Tuhia te pūtakerua o te -420.
x=\frac{0±2\sqrt{105}i}{10}
Whakareatia 2 ki te 5.
x=\frac{\sqrt{105}i}{5}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{105}i}{10} ina he tāpiri te ±.
x=-\frac{\sqrt{105}i}{5}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{105}i}{10} ina he tango te ±.
x=\frac{\sqrt{105}i}{5} x=-\frac{\sqrt{105}i}{5}
Kua oti te whārite te whakatau.