Whakaoti mō x
x=-6
x=-\frac{1}{5}=-0.2
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x^{2}+21x+10x=-6
Me tāpiri te 10x ki ngā taha e rua.
5x^{2}+31x=-6
Pahekotia te 21x me 10x, ka 31x.
5x^{2}+31x+6=0
Me tāpiri te 6 ki ngā taha e rua.
a+b=31 ab=5\times 6=30
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 5x^{2}+ax+bx+6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,30 2,15 3,10 5,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 30.
1+30=31 2+15=17 3+10=13 5+6=11
Tātaihia te tapeke mō ia takirua.
a=1 b=30
Ko te otinga te takirua ka hoatu i te tapeke 31.
\left(5x^{2}+x\right)+\left(30x+6\right)
Tuhia anō te 5x^{2}+31x+6 hei \left(5x^{2}+x\right)+\left(30x+6\right).
x\left(5x+1\right)+6\left(5x+1\right)
Tauwehea te x i te tuatahi me te 6 i te rōpū tuarua.
\left(5x+1\right)\left(x+6\right)
Whakatauwehea atu te kīanga pātahi 5x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-\frac{1}{5} x=-6
Hei kimi otinga whārite, me whakaoti te 5x+1=0 me te x+6=0.
5x^{2}+21x+10x=-6
Me tāpiri te 10x ki ngā taha e rua.
5x^{2}+31x=-6
Pahekotia te 21x me 10x, ka 31x.
5x^{2}+31x+6=0
Me tāpiri te 6 ki ngā taha e rua.
x=\frac{-31±\sqrt{31^{2}-4\times 5\times 6}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 31 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-31±\sqrt{961-4\times 5\times 6}}{2\times 5}
Pūrua 31.
x=\frac{-31±\sqrt{961-20\times 6}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-31±\sqrt{961-120}}{2\times 5}
Whakareatia -20 ki te 6.
x=\frac{-31±\sqrt{841}}{2\times 5}
Tāpiri 961 ki te -120.
x=\frac{-31±29}{2\times 5}
Tuhia te pūtakerua o te 841.
x=\frac{-31±29}{10}
Whakareatia 2 ki te 5.
x=-\frac{2}{10}
Nā, me whakaoti te whārite x=\frac{-31±29}{10} ina he tāpiri te ±. Tāpiri -31 ki te 29.
x=-\frac{1}{5}
Whakahekea te hautanga \frac{-2}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{60}{10}
Nā, me whakaoti te whārite x=\frac{-31±29}{10} ina he tango te ±. Tango 29 mai i -31.
x=-6
Whakawehe -60 ki te 10.
x=-\frac{1}{5} x=-6
Kua oti te whārite te whakatau.
5x^{2}+21x+10x=-6
Me tāpiri te 10x ki ngā taha e rua.
5x^{2}+31x=-6
Pahekotia te 21x me 10x, ka 31x.
\frac{5x^{2}+31x}{5}=-\frac{6}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\frac{31}{5}x=-\frac{6}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}+\frac{31}{5}x+\left(\frac{31}{10}\right)^{2}=-\frac{6}{5}+\left(\frac{31}{10}\right)^{2}
Whakawehea te \frac{31}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{31}{10}. Nā, tāpiria te pūrua o te \frac{31}{10} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{31}{5}x+\frac{961}{100}=-\frac{6}{5}+\frac{961}{100}
Pūruatia \frac{31}{10} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{31}{5}x+\frac{961}{100}=\frac{841}{100}
Tāpiri -\frac{6}{5} ki te \frac{961}{100} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{31}{10}\right)^{2}=\frac{841}{100}
Tauwehea x^{2}+\frac{31}{5}x+\frac{961}{100}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{31}{10}\right)^{2}}=\sqrt{\frac{841}{100}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{31}{10}=\frac{29}{10} x+\frac{31}{10}=-\frac{29}{10}
Whakarūnātia.
x=-\frac{1}{5} x=-6
Me tango \frac{31}{10} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}