Tauwehe
5\left(x-2\right)\left(x+6\right)
Aromātai
5\left(x-2\right)\left(x+6\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
5\left(x^{2}+4x-12\right)
Tauwehea te 5.
a+b=4 ab=1\left(-12\right)=-12
Whakaarohia te x^{2}+4x-12. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx-12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,12 -2,6 -3,4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
-1+12=11 -2+6=4 -3+4=1
Tātaihia te tapeke mō ia takirua.
a=-2 b=6
Ko te otinga te takirua ka hoatu i te tapeke 4.
\left(x^{2}-2x\right)+\left(6x-12\right)
Tuhia anō te x^{2}+4x-12 hei \left(x^{2}-2x\right)+\left(6x-12\right).
x\left(x-2\right)+6\left(x-2\right)
Tauwehea te x i te tuatahi me te 6 i te rōpū tuarua.
\left(x-2\right)\left(x+6\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
5\left(x-2\right)\left(x+6\right)
Me tuhi anō te kīanga whakatauwehe katoa.
5x^{2}+20x-60=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-20±\sqrt{20^{2}-4\times 5\left(-60\right)}}{2\times 5}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-20±\sqrt{400-4\times 5\left(-60\right)}}{2\times 5}
Pūrua 20.
x=\frac{-20±\sqrt{400-20\left(-60\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-20±\sqrt{400+1200}}{2\times 5}
Whakareatia -20 ki te -60.
x=\frac{-20±\sqrt{1600}}{2\times 5}
Tāpiri 400 ki te 1200.
x=\frac{-20±40}{2\times 5}
Tuhia te pūtakerua o te 1600.
x=\frac{-20±40}{10}
Whakareatia 2 ki te 5.
x=\frac{20}{10}
Nā, me whakaoti te whārite x=\frac{-20±40}{10} ina he tāpiri te ±. Tāpiri -20 ki te 40.
x=2
Whakawehe 20 ki te 10.
x=-\frac{60}{10}
Nā, me whakaoti te whārite x=\frac{-20±40}{10} ina he tango te ±. Tango 40 mai i -20.
x=-6
Whakawehe -60 ki te 10.
5x^{2}+20x-60=5\left(x-2\right)\left(x-\left(-6\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 2 mō te x_{1} me te -6 mō te x_{2}.
5x^{2}+20x-60=5\left(x-2\right)\left(x+6\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}