Whakaoti mō x
x = -\frac{7}{5} = -1\frac{2}{5} = -1.4
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x^{2}+2x-7=0
Tangohia te 7 mai i ngā taha e rua.
a+b=2 ab=5\left(-7\right)=-35
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 5x^{2}+ax+bx-7. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,35 -5,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -35.
-1+35=34 -5+7=2
Tātaihia te tapeke mō ia takirua.
a=-5 b=7
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(5x^{2}-5x\right)+\left(7x-7\right)
Tuhia anō te 5x^{2}+2x-7 hei \left(5x^{2}-5x\right)+\left(7x-7\right).
5x\left(x-1\right)+7\left(x-1\right)
Tauwehea te 5x i te tuatahi me te 7 i te rōpū tuarua.
\left(x-1\right)\left(5x+7\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-\frac{7}{5}
Hei kimi otinga whārite, me whakaoti te x-1=0 me te 5x+7=0.
5x^{2}+2x=7
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
5x^{2}+2x-7=7-7
Me tango 7 mai i ngā taha e rua o te whārite.
5x^{2}+2x-7=0
Mā te tango i te 7 i a ia ake anō ka toe ko te 0.
x=\frac{-2±\sqrt{2^{2}-4\times 5\left(-7\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 2 mō b, me -7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 5\left(-7\right)}}{2\times 5}
Pūrua 2.
x=\frac{-2±\sqrt{4-20\left(-7\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-2±\sqrt{4+140}}{2\times 5}
Whakareatia -20 ki te -7.
x=\frac{-2±\sqrt{144}}{2\times 5}
Tāpiri 4 ki te 140.
x=\frac{-2±12}{2\times 5}
Tuhia te pūtakerua o te 144.
x=\frac{-2±12}{10}
Whakareatia 2 ki te 5.
x=\frac{10}{10}
Nā, me whakaoti te whārite x=\frac{-2±12}{10} ina he tāpiri te ±. Tāpiri -2 ki te 12.
x=1
Whakawehe 10 ki te 10.
x=-\frac{14}{10}
Nā, me whakaoti te whārite x=\frac{-2±12}{10} ina he tango te ±. Tango 12 mai i -2.
x=-\frac{7}{5}
Whakahekea te hautanga \frac{-14}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=1 x=-\frac{7}{5}
Kua oti te whārite te whakatau.
5x^{2}+2x=7
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{5x^{2}+2x}{5}=\frac{7}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\frac{2}{5}x=\frac{7}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}+\frac{2}{5}x+\left(\frac{1}{5}\right)^{2}=\frac{7}{5}+\left(\frac{1}{5}\right)^{2}
Whakawehea te \frac{2}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{5}. Nā, tāpiria te pūrua o te \frac{1}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{2}{5}x+\frac{1}{25}=\frac{7}{5}+\frac{1}{25}
Pūruatia \frac{1}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{2}{5}x+\frac{1}{25}=\frac{36}{25}
Tāpiri \frac{7}{5} ki te \frac{1}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{5}\right)^{2}=\frac{36}{25}
Tauwehea x^{2}+\frac{2}{5}x+\frac{1}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{5}\right)^{2}}=\sqrt{\frac{36}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{5}=\frac{6}{5} x+\frac{1}{5}=-\frac{6}{5}
Whakarūnātia.
x=1 x=-\frac{7}{5}
Me tango \frac{1}{5} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}