Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x^{2}+18x+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-18±\sqrt{18^{2}-4\times 5}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 18 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\times 5}}{2\times 5}
Pūrua 18.
x=\frac{-18±\sqrt{324-20}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-18±\sqrt{304}}{2\times 5}
Tāpiri 324 ki te -20.
x=\frac{-18±4\sqrt{19}}{2\times 5}
Tuhia te pūtakerua o te 304.
x=\frac{-18±4\sqrt{19}}{10}
Whakareatia 2 ki te 5.
x=\frac{4\sqrt{19}-18}{10}
Nā, me whakaoti te whārite x=\frac{-18±4\sqrt{19}}{10} ina he tāpiri te ±. Tāpiri -18 ki te 4\sqrt{19}.
x=\frac{2\sqrt{19}-9}{5}
Whakawehe -18+4\sqrt{19} ki te 10.
x=\frac{-4\sqrt{19}-18}{10}
Nā, me whakaoti te whārite x=\frac{-18±4\sqrt{19}}{10} ina he tango te ±. Tango 4\sqrt{19} mai i -18.
x=\frac{-2\sqrt{19}-9}{5}
Whakawehe -18-4\sqrt{19} ki te 10.
x=\frac{2\sqrt{19}-9}{5} x=\frac{-2\sqrt{19}-9}{5}
Kua oti te whārite te whakatau.
5x^{2}+18x+1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5x^{2}+18x+1-1=-1
Me tango 1 mai i ngā taha e rua o te whārite.
5x^{2}+18x=-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
\frac{5x^{2}+18x}{5}=-\frac{1}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\frac{18}{5}x=-\frac{1}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}+\frac{18}{5}x+\left(\frac{9}{5}\right)^{2}=-\frac{1}{5}+\left(\frac{9}{5}\right)^{2}
Whakawehea te \frac{18}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{9}{5}. Nā, tāpiria te pūrua o te \frac{9}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{18}{5}x+\frac{81}{25}=-\frac{1}{5}+\frac{81}{25}
Pūruatia \frac{9}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{18}{5}x+\frac{81}{25}=\frac{76}{25}
Tāpiri -\frac{1}{5} ki te \frac{81}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{9}{5}\right)^{2}=\frac{76}{25}
Tauwehea x^{2}+\frac{18}{5}x+\frac{81}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{5}\right)^{2}}=\sqrt{\frac{76}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{9}{5}=\frac{2\sqrt{19}}{5} x+\frac{9}{5}=-\frac{2\sqrt{19}}{5}
Whakarūnātia.
x=\frac{2\sqrt{19}-9}{5} x=\frac{-2\sqrt{19}-9}{5}
Me tango \frac{9}{5} mai i ngā taha e rua o te whārite.