Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x^{2}+17x-12x=0
Tangohia te 12x mai i ngā taha e rua.
5x^{2}+5x=0
Pahekotia te 17x me -12x, ka 5x.
x=\frac{-5±\sqrt{5^{2}}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 5 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±5}{2\times 5}
Tuhia te pūtakerua o te 5^{2}.
x=\frac{-5±5}{10}
Whakareatia 2 ki te 5.
x=\frac{0}{10}
Nā, me whakaoti te whārite x=\frac{-5±5}{10} ina he tāpiri te ±. Tāpiri -5 ki te 5.
x=0
Whakawehe 0 ki te 10.
x=-\frac{10}{10}
Nā, me whakaoti te whārite x=\frac{-5±5}{10} ina he tango te ±. Tango 5 mai i -5.
x=-1
Whakawehe -10 ki te 10.
x=0 x=-1
Kua oti te whārite te whakatau.
5x^{2}+17x-12x=0
Tangohia te 12x mai i ngā taha e rua.
5x^{2}+5x=0
Pahekotia te 17x me -12x, ka 5x.
\frac{5x^{2}+5x}{5}=\frac{0}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\frac{5}{5}x=\frac{0}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}+x=\frac{0}{5}
Whakawehe 5 ki te 5.
x^{2}+x=0
Whakawehe 0 ki te 5.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+x+\frac{1}{4}=\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{1}{2}\right)^{2}=\frac{1}{4}
Tauwehea x^{2}+x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{2}=\frac{1}{2} x+\frac{1}{2}=-\frac{1}{2}
Whakarūnātia.
x=0 x=-1
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.