Whakaoti mō x
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
10x=x^{2}+25
Whakareatia ngā taha e rua o te whārite ki te 2.
10x-x^{2}=25
Tangohia te x^{2} mai i ngā taha e rua.
10x-x^{2}-25=0
Tangohia te 25 mai i ngā taha e rua.
-x^{2}+10x-25=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=10 ab=-\left(-25\right)=25
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-25. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,25 5,5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 25.
1+25=26 5+5=10
Tātaihia te tapeke mō ia takirua.
a=5 b=5
Ko te otinga te takirua ka hoatu i te tapeke 10.
\left(-x^{2}+5x\right)+\left(5x-25\right)
Tuhia anō te -x^{2}+10x-25 hei \left(-x^{2}+5x\right)+\left(5x-25\right).
-x\left(x-5\right)+5\left(x-5\right)
Tauwehea te -x i te tuatahi me te 5 i te rōpū tuarua.
\left(x-5\right)\left(-x+5\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=5 x=5
Hei kimi otinga whārite, me whakaoti te x-5=0 me te -x+5=0.
10x=x^{2}+25
Whakareatia ngā taha e rua o te whārite ki te 2.
10x-x^{2}=25
Tangohia te x^{2} mai i ngā taha e rua.
10x-x^{2}-25=0
Tangohia te 25 mai i ngā taha e rua.
-x^{2}+10x-25=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-10±\sqrt{10^{2}-4\left(-1\right)\left(-25\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 10 mō b, me -25 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-1\right)\left(-25\right)}}{2\left(-1\right)}
Pūrua 10.
x=\frac{-10±\sqrt{100+4\left(-25\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-10±\sqrt{100-100}}{2\left(-1\right)}
Whakareatia 4 ki te -25.
x=\frac{-10±\sqrt{0}}{2\left(-1\right)}
Tāpiri 100 ki te -100.
x=-\frac{10}{2\left(-1\right)}
Tuhia te pūtakerua o te 0.
x=-\frac{10}{-2}
Whakareatia 2 ki te -1.
x=5
Whakawehe -10 ki te -2.
10x=x^{2}+25
Whakareatia ngā taha e rua o te whārite ki te 2.
10x-x^{2}=25
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}+10x=25
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+10x}{-1}=\frac{25}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{10}{-1}x=\frac{25}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-10x=\frac{25}{-1}
Whakawehe 10 ki te -1.
x^{2}-10x=-25
Whakawehe 25 ki te -1.
x^{2}-10x+\left(-5\right)^{2}=-25+\left(-5\right)^{2}
Whakawehea te -10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -5. Nā, tāpiria te pūrua o te -5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-10x+25=-25+25
Pūrua -5.
x^{2}-10x+25=0
Tāpiri -25 ki te 25.
\left(x-5\right)^{2}=0
Tauwehea x^{2}-10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-5=0 x-5=0
Whakarūnātia.
x=5 x=5
Me tāpiri 5 ki ngā taha e rua o te whārite.
x=5
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}