Whakaoti mō x
x=-\frac{\sqrt{17}}{10}+\frac{1}{2}\approx 0.087689437
x=\frac{\sqrt{17}}{10}+\frac{1}{2}\approx 0.912310563
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x\times 5x+2=25x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 5x.
25xx+2=25x
Whakareatia te 5 ki te 5, ka 25.
25x^{2}+2=25x
Whakareatia te x ki te x, ka x^{2}.
25x^{2}+2-25x=0
Tangohia te 25x mai i ngā taha e rua.
25x^{2}-25x+2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 25\times 2}}{2\times 25}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 25 mō a, -25 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±\sqrt{625-4\times 25\times 2}}{2\times 25}
Pūrua -25.
x=\frac{-\left(-25\right)±\sqrt{625-100\times 2}}{2\times 25}
Whakareatia -4 ki te 25.
x=\frac{-\left(-25\right)±\sqrt{625-200}}{2\times 25}
Whakareatia -100 ki te 2.
x=\frac{-\left(-25\right)±\sqrt{425}}{2\times 25}
Tāpiri 625 ki te -200.
x=\frac{-\left(-25\right)±5\sqrt{17}}{2\times 25}
Tuhia te pūtakerua o te 425.
x=\frac{25±5\sqrt{17}}{2\times 25}
Ko te tauaro o -25 ko 25.
x=\frac{25±5\sqrt{17}}{50}
Whakareatia 2 ki te 25.
x=\frac{5\sqrt{17}+25}{50}
Nā, me whakaoti te whārite x=\frac{25±5\sqrt{17}}{50} ina he tāpiri te ±. Tāpiri 25 ki te 5\sqrt{17}.
x=\frac{\sqrt{17}}{10}+\frac{1}{2}
Whakawehe 25+5\sqrt{17} ki te 50.
x=\frac{25-5\sqrt{17}}{50}
Nā, me whakaoti te whārite x=\frac{25±5\sqrt{17}}{50} ina he tango te ±. Tango 5\sqrt{17} mai i 25.
x=-\frac{\sqrt{17}}{10}+\frac{1}{2}
Whakawehe 25-5\sqrt{17} ki te 50.
x=\frac{\sqrt{17}}{10}+\frac{1}{2} x=-\frac{\sqrt{17}}{10}+\frac{1}{2}
Kua oti te whārite te whakatau.
5x\times 5x+2=25x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 5x.
25xx+2=25x
Whakareatia te 5 ki te 5, ka 25.
25x^{2}+2=25x
Whakareatia te x ki te x, ka x^{2}.
25x^{2}+2-25x=0
Tangohia te 25x mai i ngā taha e rua.
25x^{2}-25x=-2
Tangohia te 2 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{25x^{2}-25x}{25}=-\frac{2}{25}
Whakawehea ngā taha e rua ki te 25.
x^{2}+\left(-\frac{25}{25}\right)x=-\frac{2}{25}
Mā te whakawehe ki te 25 ka wetekia te whakareanga ki te 25.
x^{2}-x=-\frac{2}{25}
Whakawehe -25 ki te 25.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{2}{25}+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=-\frac{2}{25}+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=\frac{17}{100}
Tāpiri -\frac{2}{25} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{2}\right)^{2}=\frac{17}{100}
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{17}{100}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=\frac{\sqrt{17}}{10} x-\frac{1}{2}=-\frac{\sqrt{17}}{10}
Whakarūnātia.
x=\frac{\sqrt{17}}{10}+\frac{1}{2} x=-\frac{\sqrt{17}}{10}+\frac{1}{2}
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}