Whakaoti mō x
x=\frac{3}{4}=0.75
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-x+6=18-\left(-\left(7x+6\right)-\left(3x-24\right)\right)
Pahekotia te 5x me -2x, ka 3x.
3x-x+6=18-\left(-7x-6-\left(3x-24\right)\right)
Hei kimi i te tauaro o 7x+6, kimihia te tauaro o ia taurangi.
3x-x+6=18-\left(-7x-6-3x-\left(-24\right)\right)
Hei kimi i te tauaro o 3x-24, kimihia te tauaro o ia taurangi.
3x-x+6=18-\left(-7x-6-3x+24\right)
Ko te tauaro o -24 ko 24.
3x-x+6=18-\left(-10x-6+24\right)
Pahekotia te -7x me -3x, ka -10x.
3x-x+6=18-\left(-10x+18\right)
Tāpirihia te -6 ki te 24, ka 18.
3x-x+6=18-\left(-10x\right)-18
Hei kimi i te tauaro o -10x+18, kimihia te tauaro o ia taurangi.
3x-x+6=18+10x-18
Ko te tauaro o -10x ko 10x.
3x-x+6=10x
Tangohia te 18 i te 18, ka 0.
3x-x+6-10x=0
Tangohia te 10x mai i ngā taha e rua.
-7x-x+6=0
Pahekotia te 3x me -10x, ka -7x.
-7x-x=-6
Tangohia te 6 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-8x=-6
Pahekotia te -7x me -x, ka -8x.
x=\frac{-6}{-8}
Whakawehea ngā taha e rua ki te -8.
x=\frac{3}{4}
Whakahekea te hautanga \frac{-6}{-8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}