Whakaoti mō x
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x-3\left(2x+7\right)=6\left(2x-3\right)-3
Pahekotia te 5x me 4x, ka 9x.
9x-6x-21=6\left(2x-3\right)-3
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 2x+7.
3x-21=6\left(2x-3\right)-3
Pahekotia te 9x me -6x, ka 3x.
3x-21=12x-18-3
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te 2x-3.
3x-21=12x-21
Tangohia te 3 i te -18, ka -21.
3x-21-12x=-21
Tangohia te 12x mai i ngā taha e rua.
-9x-21=-21
Pahekotia te 3x me -12x, ka -9x.
-9x=-21+21
Me tāpiri te 21 ki ngā taha e rua.
-9x=0
Tāpirihia te -21 ki te 21, ka 0.
x=0
He ōrite te hua o ngā tau e rua ki 0 ina 0 tētahi o rāua te iti rawa. Tātemea kāore te -9 e ōrite ki 0, me ōrite pū te x ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}