Whakaoti mō w
w=9
w=-9
Pātaitai
Polynomial
5 w \times w = 405
Tohaina
Kua tāruatia ki te papatopenga
5w^{2}=405
Whakareatia te w ki te w, ka w^{2}.
w^{2}=\frac{405}{5}
Whakawehea ngā taha e rua ki te 5.
w^{2}=81
Whakawehea te 405 ki te 5, kia riro ko 81.
w=9 w=-9
Tuhia te pūtakerua o ngā taha e rua o te whārite.
5w^{2}=405
Whakareatia te w ki te w, ka w^{2}.
5w^{2}-405=0
Tangohia te 405 mai i ngā taha e rua.
w=\frac{0±\sqrt{0^{2}-4\times 5\left(-405\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 0 mō b, me -405 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{0±\sqrt{-4\times 5\left(-405\right)}}{2\times 5}
Pūrua 0.
w=\frac{0±\sqrt{-20\left(-405\right)}}{2\times 5}
Whakareatia -4 ki te 5.
w=\frac{0±\sqrt{8100}}{2\times 5}
Whakareatia -20 ki te -405.
w=\frac{0±90}{2\times 5}
Tuhia te pūtakerua o te 8100.
w=\frac{0±90}{10}
Whakareatia 2 ki te 5.
w=9
Nā, me whakaoti te whārite w=\frac{0±90}{10} ina he tāpiri te ±. Whakawehe 90 ki te 10.
w=-9
Nā, me whakaoti te whārite w=\frac{0±90}{10} ina he tango te ±. Whakawehe -90 ki te 10.
w=9 w=-9
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}