Tīpoka ki ngā ihirangi matua
Whakaoti mō w
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5w^{2}=405
Whakareatia te w ki te w, ka w^{2}.
w^{2}=\frac{405}{5}
Whakawehea ngā taha e rua ki te 5.
w^{2}=81
Whakawehea te 405 ki te 5, kia riro ko 81.
w=9 w=-9
Tuhia te pūtakerua o ngā taha e rua o te whārite.
5w^{2}=405
Whakareatia te w ki te w, ka w^{2}.
5w^{2}-405=0
Tangohia te 405 mai i ngā taha e rua.
w=\frac{0±\sqrt{0^{2}-4\times 5\left(-405\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 0 mō b, me -405 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{0±\sqrt{-4\times 5\left(-405\right)}}{2\times 5}
Pūrua 0.
w=\frac{0±\sqrt{-20\left(-405\right)}}{2\times 5}
Whakareatia -4 ki te 5.
w=\frac{0±\sqrt{8100}}{2\times 5}
Whakareatia -20 ki te -405.
w=\frac{0±90}{2\times 5}
Tuhia te pūtakerua o te 8100.
w=\frac{0±90}{10}
Whakareatia 2 ki te 5.
w=9
Nā, me whakaoti te whārite w=\frac{0±90}{10} ina he tāpiri te ±. Whakawehe 90 ki te 10.
w=-9
Nā, me whakaoti te whārite w=\frac{0±90}{10} ina he tango te ±. Whakawehe -90 ki te 10.
w=9 w=-9
Kua oti te whārite te whakatau.