Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5w^{2}-40w-50=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
w=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 5\left(-50\right)}}{2\times 5}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
w=\frac{-\left(-40\right)±\sqrt{1600-4\times 5\left(-50\right)}}{2\times 5}
Pūrua -40.
w=\frac{-\left(-40\right)±\sqrt{1600-20\left(-50\right)}}{2\times 5}
Whakareatia -4 ki te 5.
w=\frac{-\left(-40\right)±\sqrt{1600+1000}}{2\times 5}
Whakareatia -20 ki te -50.
w=\frac{-\left(-40\right)±\sqrt{2600}}{2\times 5}
Tāpiri 1600 ki te 1000.
w=\frac{-\left(-40\right)±10\sqrt{26}}{2\times 5}
Tuhia te pūtakerua o te 2600.
w=\frac{40±10\sqrt{26}}{2\times 5}
Ko te tauaro o -40 ko 40.
w=\frac{40±10\sqrt{26}}{10}
Whakareatia 2 ki te 5.
w=\frac{10\sqrt{26}+40}{10}
Nā, me whakaoti te whārite w=\frac{40±10\sqrt{26}}{10} ina he tāpiri te ±. Tāpiri 40 ki te 10\sqrt{26}.
w=\sqrt{26}+4
Whakawehe 40+10\sqrt{26} ki te 10.
w=\frac{40-10\sqrt{26}}{10}
Nā, me whakaoti te whārite w=\frac{40±10\sqrt{26}}{10} ina he tango te ±. Tango 10\sqrt{26} mai i 40.
w=4-\sqrt{26}
Whakawehe 40-10\sqrt{26} ki te 10.
5w^{2}-40w-50=5\left(w-\left(\sqrt{26}+4\right)\right)\left(w-\left(4-\sqrt{26}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 4+\sqrt{26} mō te x_{1} me te 4-\sqrt{26} mō te x_{2}.