Tauwehe
\left(5w-2\right)\left(w+3\right)
Aromātai
\left(5w-2\right)\left(w+3\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=13 ab=5\left(-6\right)=-30
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 5w^{2}+aw+bw-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,30 -2,15 -3,10 -5,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Tātaihia te tapeke mō ia takirua.
a=-2 b=15
Ko te otinga te takirua ka hoatu i te tapeke 13.
\left(5w^{2}-2w\right)+\left(15w-6\right)
Tuhia anō te 5w^{2}+13w-6 hei \left(5w^{2}-2w\right)+\left(15w-6\right).
w\left(5w-2\right)+3\left(5w-2\right)
Tauwehea te w i te tuatahi me te 3 i te rōpū tuarua.
\left(5w-2\right)\left(w+3\right)
Whakatauwehea atu te kīanga pātahi 5w-2 mā te whakamahi i te āhuatanga tātai tohatoha.
5w^{2}+13w-6=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
w=\frac{-13±\sqrt{13^{2}-4\times 5\left(-6\right)}}{2\times 5}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
w=\frac{-13±\sqrt{169-4\times 5\left(-6\right)}}{2\times 5}
Pūrua 13.
w=\frac{-13±\sqrt{169-20\left(-6\right)}}{2\times 5}
Whakareatia -4 ki te 5.
w=\frac{-13±\sqrt{169+120}}{2\times 5}
Whakareatia -20 ki te -6.
w=\frac{-13±\sqrt{289}}{2\times 5}
Tāpiri 169 ki te 120.
w=\frac{-13±17}{2\times 5}
Tuhia te pūtakerua o te 289.
w=\frac{-13±17}{10}
Whakareatia 2 ki te 5.
w=\frac{4}{10}
Nā, me whakaoti te whārite w=\frac{-13±17}{10} ina he tāpiri te ±. Tāpiri -13 ki te 17.
w=\frac{2}{5}
Whakahekea te hautanga \frac{4}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
w=-\frac{30}{10}
Nā, me whakaoti te whārite w=\frac{-13±17}{10} ina he tango te ±. Tango 17 mai i -13.
w=-3
Whakawehe -30 ki te 10.
5w^{2}+13w-6=5\left(w-\frac{2}{5}\right)\left(w-\left(-3\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{2}{5} mō te x_{1} me te -3 mō te x_{2}.
5w^{2}+13w-6=5\left(w-\frac{2}{5}\right)\left(w+3\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
5w^{2}+13w-6=5\times \frac{5w-2}{5}\left(w+3\right)
Tango \frac{2}{5} mai i w mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
5w^{2}+13w-6=\left(5w-2\right)\left(w+3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 5 i roto i te 5 me te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}