Tīpoka ki ngā ihirangi matua
Whakaoti mō w
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5w^{2}+13w+6=0
Me tāpiri te 6 ki ngā taha e rua.
a+b=13 ab=5\times 6=30
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 5w^{2}+aw+bw+6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,30 2,15 3,10 5,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 30.
1+30=31 2+15=17 3+10=13 5+6=11
Tātaihia te tapeke mō ia takirua.
a=3 b=10
Ko te otinga te takirua ka hoatu i te tapeke 13.
\left(5w^{2}+3w\right)+\left(10w+6\right)
Tuhia anō te 5w^{2}+13w+6 hei \left(5w^{2}+3w\right)+\left(10w+6\right).
w\left(5w+3\right)+2\left(5w+3\right)
Tauwehea te w i te tuatahi me te 2 i te rōpū tuarua.
\left(5w+3\right)\left(w+2\right)
Whakatauwehea atu te kīanga pātahi 5w+3 mā te whakamahi i te āhuatanga tātai tohatoha.
w=-\frac{3}{5} w=-2
Hei kimi otinga whārite, me whakaoti te 5w+3=0 me te w+2=0.
5w^{2}+13w=-6
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
5w^{2}+13w-\left(-6\right)=-6-\left(-6\right)
Me tāpiri 6 ki ngā taha e rua o te whārite.
5w^{2}+13w-\left(-6\right)=0
Mā te tango i te -6 i a ia ake anō ka toe ko te 0.
5w^{2}+13w+6=0
Tango -6 mai i 0.
w=\frac{-13±\sqrt{13^{2}-4\times 5\times 6}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 13 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-13±\sqrt{169-4\times 5\times 6}}{2\times 5}
Pūrua 13.
w=\frac{-13±\sqrt{169-20\times 6}}{2\times 5}
Whakareatia -4 ki te 5.
w=\frac{-13±\sqrt{169-120}}{2\times 5}
Whakareatia -20 ki te 6.
w=\frac{-13±\sqrt{49}}{2\times 5}
Tāpiri 169 ki te -120.
w=\frac{-13±7}{2\times 5}
Tuhia te pūtakerua o te 49.
w=\frac{-13±7}{10}
Whakareatia 2 ki te 5.
w=-\frac{6}{10}
Nā, me whakaoti te whārite w=\frac{-13±7}{10} ina he tāpiri te ±. Tāpiri -13 ki te 7.
w=-\frac{3}{5}
Whakahekea te hautanga \frac{-6}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
w=-\frac{20}{10}
Nā, me whakaoti te whārite w=\frac{-13±7}{10} ina he tango te ±. Tango 7 mai i -13.
w=-2
Whakawehe -20 ki te 10.
w=-\frac{3}{5} w=-2
Kua oti te whārite te whakatau.
5w^{2}+13w=-6
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{5w^{2}+13w}{5}=-\frac{6}{5}
Whakawehea ngā taha e rua ki te 5.
w^{2}+\frac{13}{5}w=-\frac{6}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
w^{2}+\frac{13}{5}w+\left(\frac{13}{10}\right)^{2}=-\frac{6}{5}+\left(\frac{13}{10}\right)^{2}
Whakawehea te \frac{13}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{13}{10}. Nā, tāpiria te pūrua o te \frac{13}{10} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
w^{2}+\frac{13}{5}w+\frac{169}{100}=-\frac{6}{5}+\frac{169}{100}
Pūruatia \frac{13}{10} mā te pūrua i te taurunga me te tauraro o te hautanga.
w^{2}+\frac{13}{5}w+\frac{169}{100}=\frac{49}{100}
Tāpiri -\frac{6}{5} ki te \frac{169}{100} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(w+\frac{13}{10}\right)^{2}=\frac{49}{100}
Tauwehea w^{2}+\frac{13}{5}w+\frac{169}{100}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w+\frac{13}{10}\right)^{2}}=\sqrt{\frac{49}{100}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
w+\frac{13}{10}=\frac{7}{10} w+\frac{13}{10}=-\frac{7}{10}
Whakarūnātia.
w=-\frac{3}{5} w=-2
Me tango \frac{13}{10} mai i ngā taha e rua o te whārite.