Tauwehe
5\left(v+2\right)\left(v+7\right)
Aromātai
5\left(v+2\right)\left(v+7\right)
Tohaina
Kua tāruatia ki te papatopenga
5\left(v^{2}+9v+14\right)
Tauwehea te 5.
a+b=9 ab=1\times 14=14
Whakaarohia te v^{2}+9v+14. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei v^{2}+av+bv+14. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,14 2,7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 14.
1+14=15 2+7=9
Tātaihia te tapeke mō ia takirua.
a=2 b=7
Ko te otinga te takirua ka hoatu i te tapeke 9.
\left(v^{2}+2v\right)+\left(7v+14\right)
Tuhia anō te v^{2}+9v+14 hei \left(v^{2}+2v\right)+\left(7v+14\right).
v\left(v+2\right)+7\left(v+2\right)
Tauwehea te v i te tuatahi me te 7 i te rōpū tuarua.
\left(v+2\right)\left(v+7\right)
Whakatauwehea atu te kīanga pātahi v+2 mā te whakamahi i te āhuatanga tātai tohatoha.
5\left(v+2\right)\left(v+7\right)
Me tuhi anō te kīanga whakatauwehe katoa.
5v^{2}+45v+70=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
v=\frac{-45±\sqrt{45^{2}-4\times 5\times 70}}{2\times 5}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
v=\frac{-45±\sqrt{2025-4\times 5\times 70}}{2\times 5}
Pūrua 45.
v=\frac{-45±\sqrt{2025-20\times 70}}{2\times 5}
Whakareatia -4 ki te 5.
v=\frac{-45±\sqrt{2025-1400}}{2\times 5}
Whakareatia -20 ki te 70.
v=\frac{-45±\sqrt{625}}{2\times 5}
Tāpiri 2025 ki te -1400.
v=\frac{-45±25}{2\times 5}
Tuhia te pūtakerua o te 625.
v=\frac{-45±25}{10}
Whakareatia 2 ki te 5.
v=-\frac{20}{10}
Nā, me whakaoti te whārite v=\frac{-45±25}{10} ina he tāpiri te ±. Tāpiri -45 ki te 25.
v=-2
Whakawehe -20 ki te 10.
v=-\frac{70}{10}
Nā, me whakaoti te whārite v=\frac{-45±25}{10} ina he tango te ±. Tango 25 mai i -45.
v=-7
Whakawehe -70 ki te 10.
5v^{2}+45v+70=5\left(v-\left(-2\right)\right)\left(v-\left(-7\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -2 mō te x_{1} me te -7 mō te x_{2}.
5v^{2}+45v+70=5\left(v+2\right)\left(v+7\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}