Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5v^{2}+30v-70=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
v=\frac{-30±\sqrt{30^{2}-4\times 5\left(-70\right)}}{2\times 5}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
v=\frac{-30±\sqrt{900-4\times 5\left(-70\right)}}{2\times 5}
Pūrua 30.
v=\frac{-30±\sqrt{900-20\left(-70\right)}}{2\times 5}
Whakareatia -4 ki te 5.
v=\frac{-30±\sqrt{900+1400}}{2\times 5}
Whakareatia -20 ki te -70.
v=\frac{-30±\sqrt{2300}}{2\times 5}
Tāpiri 900 ki te 1400.
v=\frac{-30±10\sqrt{23}}{2\times 5}
Tuhia te pūtakerua o te 2300.
v=\frac{-30±10\sqrt{23}}{10}
Whakareatia 2 ki te 5.
v=\frac{10\sqrt{23}-30}{10}
Nā, me whakaoti te whārite v=\frac{-30±10\sqrt{23}}{10} ina he tāpiri te ±. Tāpiri -30 ki te 10\sqrt{23}.
v=\sqrt{23}-3
Whakawehe -30+10\sqrt{23} ki te 10.
v=\frac{-10\sqrt{23}-30}{10}
Nā, me whakaoti te whārite v=\frac{-30±10\sqrt{23}}{10} ina he tango te ±. Tango 10\sqrt{23} mai i -30.
v=-\sqrt{23}-3
Whakawehe -30-10\sqrt{23} ki te 10.
5v^{2}+30v-70=5\left(v-\left(\sqrt{23}-3\right)\right)\left(v-\left(-\sqrt{23}-3\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -3+\sqrt{23} mō te x_{1} me te -3-\sqrt{23} mō te x_{2}.