Tauwehe
5\left(u-5\right)\left(u+2\right)
Aromātai
5\left(u-5\right)\left(u+2\right)
Tohaina
Kua tāruatia ki te papatopenga
5\left(u^{2}-3u-10\right)
Tauwehea te 5.
a+b=-3 ab=1\left(-10\right)=-10
Whakaarohia te u^{2}-3u-10. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei u^{2}+au+bu-10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-10 2,-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -10.
1-10=-9 2-5=-3
Tātaihia te tapeke mō ia takirua.
a=-5 b=2
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(u^{2}-5u\right)+\left(2u-10\right)
Tuhia anō te u^{2}-3u-10 hei \left(u^{2}-5u\right)+\left(2u-10\right).
u\left(u-5\right)+2\left(u-5\right)
Tauwehea te u i te tuatahi me te 2 i te rōpū tuarua.
\left(u-5\right)\left(u+2\right)
Whakatauwehea atu te kīanga pātahi u-5 mā te whakamahi i te āhuatanga tātai tohatoha.
5\left(u-5\right)\left(u+2\right)
Me tuhi anō te kīanga whakatauwehe katoa.
5u^{2}-15u-50=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
u=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 5\left(-50\right)}}{2\times 5}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
u=\frac{-\left(-15\right)±\sqrt{225-4\times 5\left(-50\right)}}{2\times 5}
Pūrua -15.
u=\frac{-\left(-15\right)±\sqrt{225-20\left(-50\right)}}{2\times 5}
Whakareatia -4 ki te 5.
u=\frac{-\left(-15\right)±\sqrt{225+1000}}{2\times 5}
Whakareatia -20 ki te -50.
u=\frac{-\left(-15\right)±\sqrt{1225}}{2\times 5}
Tāpiri 225 ki te 1000.
u=\frac{-\left(-15\right)±35}{2\times 5}
Tuhia te pūtakerua o te 1225.
u=\frac{15±35}{2\times 5}
Ko te tauaro o -15 ko 15.
u=\frac{15±35}{10}
Whakareatia 2 ki te 5.
u=\frac{50}{10}
Nā, me whakaoti te whārite u=\frac{15±35}{10} ina he tāpiri te ±. Tāpiri 15 ki te 35.
u=5
Whakawehe 50 ki te 10.
u=-\frac{20}{10}
Nā, me whakaoti te whārite u=\frac{15±35}{10} ina he tango te ±. Tango 35 mai i 15.
u=-2
Whakawehe -20 ki te 10.
5u^{2}-15u-50=5\left(u-5\right)\left(u-\left(-2\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 5 mō te x_{1} me te -2 mō te x_{2}.
5u^{2}-15u-50=5\left(u-5\right)\left(u+2\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}