Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5t^{2}-9t+15=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 5\times 15}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -9 mō b, me 15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-9\right)±\sqrt{81-4\times 5\times 15}}{2\times 5}
Pūrua -9.
t=\frac{-\left(-9\right)±\sqrt{81-20\times 15}}{2\times 5}
Whakareatia -4 ki te 5.
t=\frac{-\left(-9\right)±\sqrt{81-300}}{2\times 5}
Whakareatia -20 ki te 15.
t=\frac{-\left(-9\right)±\sqrt{-219}}{2\times 5}
Tāpiri 81 ki te -300.
t=\frac{-\left(-9\right)±\sqrt{219}i}{2\times 5}
Tuhia te pūtakerua o te -219.
t=\frac{9±\sqrt{219}i}{2\times 5}
Ko te tauaro o -9 ko 9.
t=\frac{9±\sqrt{219}i}{10}
Whakareatia 2 ki te 5.
t=\frac{9+\sqrt{219}i}{10}
Nā, me whakaoti te whārite t=\frac{9±\sqrt{219}i}{10} ina he tāpiri te ±. Tāpiri 9 ki te i\sqrt{219}.
t=\frac{-\sqrt{219}i+9}{10}
Nā, me whakaoti te whārite t=\frac{9±\sqrt{219}i}{10} ina he tango te ±. Tango i\sqrt{219} mai i 9.
t=\frac{9+\sqrt{219}i}{10} t=\frac{-\sqrt{219}i+9}{10}
Kua oti te whārite te whakatau.
5t^{2}-9t+15=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5t^{2}-9t+15-15=-15
Me tango 15 mai i ngā taha e rua o te whārite.
5t^{2}-9t=-15
Mā te tango i te 15 i a ia ake anō ka toe ko te 0.
\frac{5t^{2}-9t}{5}=-\frac{15}{5}
Whakawehea ngā taha e rua ki te 5.
t^{2}-\frac{9}{5}t=-\frac{15}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
t^{2}-\frac{9}{5}t=-3
Whakawehe -15 ki te 5.
t^{2}-\frac{9}{5}t+\left(-\frac{9}{10}\right)^{2}=-3+\left(-\frac{9}{10}\right)^{2}
Whakawehea te -\frac{9}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{10}. Nā, tāpiria te pūrua o te -\frac{9}{10} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-\frac{9}{5}t+\frac{81}{100}=-3+\frac{81}{100}
Pūruatia -\frac{9}{10} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}-\frac{9}{5}t+\frac{81}{100}=-\frac{219}{100}
Tāpiri -3 ki te \frac{81}{100}.
\left(t-\frac{9}{10}\right)^{2}=-\frac{219}{100}
Tauwehea t^{2}-\frac{9}{5}t+\frac{81}{100}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{9}{10}\right)^{2}}=\sqrt{-\frac{219}{100}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-\frac{9}{10}=\frac{\sqrt{219}i}{10} t-\frac{9}{10}=-\frac{\sqrt{219}i}{10}
Whakarūnātia.
t=\frac{9+\sqrt{219}i}{10} t=\frac{-\sqrt{219}i+9}{10}
Me tāpiri \frac{9}{10} ki ngā taha e rua o te whārite.