Whakaoti mō t
t = \frac{6 \sqrt{51} + 36}{5} \approx 15.769714114
t=\frac{36-6\sqrt{51}}{5}\approx -1.369714114
Tohaina
Kua tāruatia ki te papatopenga
5t^{2}-72t-108=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-\left(-72\right)±\sqrt{\left(-72\right)^{2}-4\times 5\left(-108\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -72 mō b, me -108 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-72\right)±\sqrt{5184-4\times 5\left(-108\right)}}{2\times 5}
Pūrua -72.
t=\frac{-\left(-72\right)±\sqrt{5184-20\left(-108\right)}}{2\times 5}
Whakareatia -4 ki te 5.
t=\frac{-\left(-72\right)±\sqrt{5184+2160}}{2\times 5}
Whakareatia -20 ki te -108.
t=\frac{-\left(-72\right)±\sqrt{7344}}{2\times 5}
Tāpiri 5184 ki te 2160.
t=\frac{-\left(-72\right)±12\sqrt{51}}{2\times 5}
Tuhia te pūtakerua o te 7344.
t=\frac{72±12\sqrt{51}}{2\times 5}
Ko te tauaro o -72 ko 72.
t=\frac{72±12\sqrt{51}}{10}
Whakareatia 2 ki te 5.
t=\frac{12\sqrt{51}+72}{10}
Nā, me whakaoti te whārite t=\frac{72±12\sqrt{51}}{10} ina he tāpiri te ±. Tāpiri 72 ki te 12\sqrt{51}.
t=\frac{6\sqrt{51}+36}{5}
Whakawehe 72+12\sqrt{51} ki te 10.
t=\frac{72-12\sqrt{51}}{10}
Nā, me whakaoti te whārite t=\frac{72±12\sqrt{51}}{10} ina he tango te ±. Tango 12\sqrt{51} mai i 72.
t=\frac{36-6\sqrt{51}}{5}
Whakawehe 72-12\sqrt{51} ki te 10.
t=\frac{6\sqrt{51}+36}{5} t=\frac{36-6\sqrt{51}}{5}
Kua oti te whārite te whakatau.
5t^{2}-72t-108=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5t^{2}-72t-108-\left(-108\right)=-\left(-108\right)
Me tāpiri 108 ki ngā taha e rua o te whārite.
5t^{2}-72t=-\left(-108\right)
Mā te tango i te -108 i a ia ake anō ka toe ko te 0.
5t^{2}-72t=108
Tango -108 mai i 0.
\frac{5t^{2}-72t}{5}=\frac{108}{5}
Whakawehea ngā taha e rua ki te 5.
t^{2}-\frac{72}{5}t=\frac{108}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
t^{2}-\frac{72}{5}t+\left(-\frac{36}{5}\right)^{2}=\frac{108}{5}+\left(-\frac{36}{5}\right)^{2}
Whakawehea te -\frac{72}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{36}{5}. Nā, tāpiria te pūrua o te -\frac{36}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-\frac{72}{5}t+\frac{1296}{25}=\frac{108}{5}+\frac{1296}{25}
Pūruatia -\frac{36}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}-\frac{72}{5}t+\frac{1296}{25}=\frac{1836}{25}
Tāpiri \frac{108}{5} ki te \frac{1296}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(t-\frac{36}{5}\right)^{2}=\frac{1836}{25}
Tauwehea t^{2}-\frac{72}{5}t+\frac{1296}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{36}{5}\right)^{2}}=\sqrt{\frac{1836}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-\frac{36}{5}=\frac{6\sqrt{51}}{5} t-\frac{36}{5}=-\frac{6\sqrt{51}}{5}
Whakarūnātia.
t=\frac{6\sqrt{51}+36}{5} t=\frac{36-6\sqrt{51}}{5}
Me tāpiri \frac{36}{5} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}