Tauwehe
5\left(s+1\right)\left(s+10\right)
Aromātai
5\left(s+1\right)\left(s+10\right)
Tohaina
Kua tāruatia ki te papatopenga
5\left(s^{2}+11s+10\right)
Tauwehea te 5.
a+b=11 ab=1\times 10=10
Whakaarohia te s^{2}+11s+10. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei s^{2}+as+bs+10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,10 2,5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 10.
1+10=11 2+5=7
Tātaihia te tapeke mō ia takirua.
a=1 b=10
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(s^{2}+s\right)+\left(10s+10\right)
Tuhia anō te s^{2}+11s+10 hei \left(s^{2}+s\right)+\left(10s+10\right).
s\left(s+1\right)+10\left(s+1\right)
Tauwehea te s i te tuatahi me te 10 i te rōpū tuarua.
\left(s+1\right)\left(s+10\right)
Whakatauwehea atu te kīanga pātahi s+1 mā te whakamahi i te āhuatanga tātai tohatoha.
5\left(s+1\right)\left(s+10\right)
Me tuhi anō te kīanga whakatauwehe katoa.
5s^{2}+55s+50=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
s=\frac{-55±\sqrt{55^{2}-4\times 5\times 50}}{2\times 5}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
s=\frac{-55±\sqrt{3025-4\times 5\times 50}}{2\times 5}
Pūrua 55.
s=\frac{-55±\sqrt{3025-20\times 50}}{2\times 5}
Whakareatia -4 ki te 5.
s=\frac{-55±\sqrt{3025-1000}}{2\times 5}
Whakareatia -20 ki te 50.
s=\frac{-55±\sqrt{2025}}{2\times 5}
Tāpiri 3025 ki te -1000.
s=\frac{-55±45}{2\times 5}
Tuhia te pūtakerua o te 2025.
s=\frac{-55±45}{10}
Whakareatia 2 ki te 5.
s=-\frac{10}{10}
Nā, me whakaoti te whārite s=\frac{-55±45}{10} ina he tāpiri te ±. Tāpiri -55 ki te 45.
s=-1
Whakawehe -10 ki te 10.
s=-\frac{100}{10}
Nā, me whakaoti te whārite s=\frac{-55±45}{10} ina he tango te ±. Tango 45 mai i -55.
s=-10
Whakawehe -100 ki te 10.
5s^{2}+55s+50=5\left(s-\left(-1\right)\right)\left(s-\left(-10\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -1 mō te x_{1} me te -10 mō te x_{2}.
5s^{2}+55s+50=5\left(s+1\right)\left(s+10\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}