Whakaoti mō r
r=-\frac{4}{5}=-0.8
r=3
Tohaina
Kua tāruatia ki te papatopenga
5r^{2}-11r=12
Tangohia te 11r mai i ngā taha e rua.
5r^{2}-11r-12=0
Tangohia te 12 mai i ngā taha e rua.
a+b=-11 ab=5\left(-12\right)=-60
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 5r^{2}+ar+br-12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -60.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Tātaihia te tapeke mō ia takirua.
a=-15 b=4
Ko te otinga te takirua ka hoatu i te tapeke -11.
\left(5r^{2}-15r\right)+\left(4r-12\right)
Tuhia anō te 5r^{2}-11r-12 hei \left(5r^{2}-15r\right)+\left(4r-12\right).
5r\left(r-3\right)+4\left(r-3\right)
Tauwehea te 5r i te tuatahi me te 4 i te rōpū tuarua.
\left(r-3\right)\left(5r+4\right)
Whakatauwehea atu te kīanga pātahi r-3 mā te whakamahi i te āhuatanga tātai tohatoha.
r=3 r=-\frac{4}{5}
Hei kimi otinga whārite, me whakaoti te r-3=0 me te 5r+4=0.
5r^{2}-11r=12
Tangohia te 11r mai i ngā taha e rua.
5r^{2}-11r-12=0
Tangohia te 12 mai i ngā taha e rua.
r=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 5\left(-12\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -11 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-\left(-11\right)±\sqrt{121-4\times 5\left(-12\right)}}{2\times 5}
Pūrua -11.
r=\frac{-\left(-11\right)±\sqrt{121-20\left(-12\right)}}{2\times 5}
Whakareatia -4 ki te 5.
r=\frac{-\left(-11\right)±\sqrt{121+240}}{2\times 5}
Whakareatia -20 ki te -12.
r=\frac{-\left(-11\right)±\sqrt{361}}{2\times 5}
Tāpiri 121 ki te 240.
r=\frac{-\left(-11\right)±19}{2\times 5}
Tuhia te pūtakerua o te 361.
r=\frac{11±19}{2\times 5}
Ko te tauaro o -11 ko 11.
r=\frac{11±19}{10}
Whakareatia 2 ki te 5.
r=\frac{30}{10}
Nā, me whakaoti te whārite r=\frac{11±19}{10} ina he tāpiri te ±. Tāpiri 11 ki te 19.
r=3
Whakawehe 30 ki te 10.
r=-\frac{8}{10}
Nā, me whakaoti te whārite r=\frac{11±19}{10} ina he tango te ±. Tango 19 mai i 11.
r=-\frac{4}{5}
Whakahekea te hautanga \frac{-8}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
r=3 r=-\frac{4}{5}
Kua oti te whārite te whakatau.
5r^{2}-11r=12
Tangohia te 11r mai i ngā taha e rua.
\frac{5r^{2}-11r}{5}=\frac{12}{5}
Whakawehea ngā taha e rua ki te 5.
r^{2}-\frac{11}{5}r=\frac{12}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
r^{2}-\frac{11}{5}r+\left(-\frac{11}{10}\right)^{2}=\frac{12}{5}+\left(-\frac{11}{10}\right)^{2}
Whakawehea te -\frac{11}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{10}. Nā, tāpiria te pūrua o te -\frac{11}{10} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
r^{2}-\frac{11}{5}r+\frac{121}{100}=\frac{12}{5}+\frac{121}{100}
Pūruatia -\frac{11}{10} mā te pūrua i te taurunga me te tauraro o te hautanga.
r^{2}-\frac{11}{5}r+\frac{121}{100}=\frac{361}{100}
Tāpiri \frac{12}{5} ki te \frac{121}{100} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(r-\frac{11}{10}\right)^{2}=\frac{361}{100}
Tauwehea r^{2}-\frac{11}{5}r+\frac{121}{100}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-\frac{11}{10}\right)^{2}}=\sqrt{\frac{361}{100}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
r-\frac{11}{10}=\frac{19}{10} r-\frac{11}{10}=-\frac{19}{10}
Whakarūnātia.
r=3 r=-\frac{4}{5}
Me tāpiri \frac{11}{10} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}