Whakaoti mō p
p = \frac{\sqrt{35}}{5} \approx 1.183215957
p = -\frac{\sqrt{35}}{5} \approx -1.183215957
p=-1
Tohaina
Kua tāruatia ki te papatopenga
5p^{3}+5p^{2}-7p-7=0
Tangohia te 7 mai i ngā taha e rua.
±\frac{7}{5},±7,±\frac{1}{5},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -7, ā, ka wehea e q te whakarea arahanga 5. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
p=-1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
5p^{2}-7=0
Mā te whakatakotoranga Tauwehe, he tauwehe te p-k o te pūrau mō ia pūtake k. Whakawehea te 5p^{3}+5p^{2}-7p-7 ki te p+1, kia riro ko 5p^{2}-7. Whakaotihia te whārite ina ōrite te hua ki te 0.
p=\frac{0±\sqrt{0^{2}-4\times 5\left(-7\right)}}{2\times 5}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 5 mō te a, te 0 mō te b, me te -7 mō te c i te ture pūrua.
p=\frac{0±2\sqrt{35}}{10}
Mahia ngā tātaitai.
p=-\frac{\sqrt{35}}{5} p=\frac{\sqrt{35}}{5}
Whakaotia te whārite 5p^{2}-7=0 ina he tōrunga te ±, ina he tōraro te ±.
p=-1 p=-\frac{\sqrt{35}}{5} p=\frac{\sqrt{35}}{5}
Rārangitia ngā otinga katoa i kitea.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}