Whakaoti mō p
p=7
p=0
Tohaina
Kua tāruatia ki te papatopenga
5p^{2}-35p=0
Tangohia te 35p mai i ngā taha e rua.
p\left(5p-35\right)=0
Tauwehea te p.
p=0 p=7
Hei kimi otinga whārite, me whakaoti te p=0 me te 5p-35=0.
5p^{2}-35p=0
Tangohia te 35p mai i ngā taha e rua.
p=\frac{-\left(-35\right)±\sqrt{\left(-35\right)^{2}}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -35 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-35\right)±35}{2\times 5}
Tuhia te pūtakerua o te \left(-35\right)^{2}.
p=\frac{35±35}{2\times 5}
Ko te tauaro o -35 ko 35.
p=\frac{35±35}{10}
Whakareatia 2 ki te 5.
p=\frac{70}{10}
Nā, me whakaoti te whārite p=\frac{35±35}{10} ina he tāpiri te ±. Tāpiri 35 ki te 35.
p=7
Whakawehe 70 ki te 10.
p=\frac{0}{10}
Nā, me whakaoti te whārite p=\frac{35±35}{10} ina he tango te ±. Tango 35 mai i 35.
p=0
Whakawehe 0 ki te 10.
p=7 p=0
Kua oti te whārite te whakatau.
5p^{2}-35p=0
Tangohia te 35p mai i ngā taha e rua.
\frac{5p^{2}-35p}{5}=\frac{0}{5}
Whakawehea ngā taha e rua ki te 5.
p^{2}+\left(-\frac{35}{5}\right)p=\frac{0}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
p^{2}-7p=\frac{0}{5}
Whakawehe -35 ki te 5.
p^{2}-7p=0
Whakawehe 0 ki te 5.
p^{2}-7p+\left(-\frac{7}{2}\right)^{2}=\left(-\frac{7}{2}\right)^{2}
Whakawehea te -7, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{2}. Nā, tāpiria te pūrua o te -\frac{7}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
p^{2}-7p+\frac{49}{4}=\frac{49}{4}
Pūruatia -\frac{7}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(p-\frac{7}{2}\right)^{2}=\frac{49}{4}
Tauwehea p^{2}-7p+\frac{49}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{7}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
p-\frac{7}{2}=\frac{7}{2} p-\frac{7}{2}=-\frac{7}{2}
Whakarūnātia.
p=7 p=0
Me tāpiri \frac{7}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}