Tīpoka ki ngā ihirangi matua
Whakaoti mō m (complex solution)
Tick mark Image
Whakaoti mō m
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5t^{2}+13t-6=0
Whakakapia te t mō te m^{2}.
t=\frac{-13±\sqrt{13^{2}-4\times 5\left(-6\right)}}{2\times 5}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 5 mō te a, te 13 mō te b, me te -6 mō te c i te ture pūrua.
t=\frac{-13±17}{10}
Mahia ngā tātaitai.
t=\frac{2}{5} t=-3
Whakaotia te whārite t=\frac{-13±17}{10} ina he tōrunga te ±, ina he tōraro te ±.
m=-\frac{\sqrt{10}}{5} m=\frac{\sqrt{10}}{5} m=-\sqrt{3}i m=\sqrt{3}i
I te mea ko m=t^{2}, ka riro ngā otinga mā te arotake i te m=±\sqrt{t} mō ia t.
5t^{2}+13t-6=0
Whakakapia te t mō te m^{2}.
t=\frac{-13±\sqrt{13^{2}-4\times 5\left(-6\right)}}{2\times 5}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 5 mō te a, te 13 mō te b, me te -6 mō te c i te ture pūrua.
t=\frac{-13±17}{10}
Mahia ngā tātaitai.
t=\frac{2}{5} t=-3
Whakaotia te whārite t=\frac{-13±17}{10} ina he tōrunga te ±, ina he tōraro te ±.
m=\frac{\sqrt{10}}{5} m=-\frac{\sqrt{10}}{5}
I te mea ko m=t^{2}, ka riro ngā otinga mā te arotake i te m=±\sqrt{t} mō t tōrunga.