Tīpoka ki ngā ihirangi matua
Whakaoti mō m
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5m^{2}-14m-15=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 5\left(-15\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -14 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-14\right)±\sqrt{196-4\times 5\left(-15\right)}}{2\times 5}
Pūrua -14.
m=\frac{-\left(-14\right)±\sqrt{196-20\left(-15\right)}}{2\times 5}
Whakareatia -4 ki te 5.
m=\frac{-\left(-14\right)±\sqrt{196+300}}{2\times 5}
Whakareatia -20 ki te -15.
m=\frac{-\left(-14\right)±\sqrt{496}}{2\times 5}
Tāpiri 196 ki te 300.
m=\frac{-\left(-14\right)±4\sqrt{31}}{2\times 5}
Tuhia te pūtakerua o te 496.
m=\frac{14±4\sqrt{31}}{2\times 5}
Ko te tauaro o -14 ko 14.
m=\frac{14±4\sqrt{31}}{10}
Whakareatia 2 ki te 5.
m=\frac{4\sqrt{31}+14}{10}
Nā, me whakaoti te whārite m=\frac{14±4\sqrt{31}}{10} ina he tāpiri te ±. Tāpiri 14 ki te 4\sqrt{31}.
m=\frac{2\sqrt{31}+7}{5}
Whakawehe 14+4\sqrt{31} ki te 10.
m=\frac{14-4\sqrt{31}}{10}
Nā, me whakaoti te whārite m=\frac{14±4\sqrt{31}}{10} ina he tango te ±. Tango 4\sqrt{31} mai i 14.
m=\frac{7-2\sqrt{31}}{5}
Whakawehe 14-4\sqrt{31} ki te 10.
m=\frac{2\sqrt{31}+7}{5} m=\frac{7-2\sqrt{31}}{5}
Kua oti te whārite te whakatau.
5m^{2}-14m-15=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
5m^{2}-14m-15-\left(-15\right)=-\left(-15\right)
Me tāpiri 15 ki ngā taha e rua o te whārite.
5m^{2}-14m=-\left(-15\right)
Mā te tango i te -15 i a ia ake anō ka toe ko te 0.
5m^{2}-14m=15
Tango -15 mai i 0.
\frac{5m^{2}-14m}{5}=\frac{15}{5}
Whakawehea ngā taha e rua ki te 5.
m^{2}-\frac{14}{5}m=\frac{15}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
m^{2}-\frac{14}{5}m=3
Whakawehe 15 ki te 5.
m^{2}-\frac{14}{5}m+\left(-\frac{7}{5}\right)^{2}=3+\left(-\frac{7}{5}\right)^{2}
Whakawehea te -\frac{14}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{5}. Nā, tāpiria te pūrua o te -\frac{7}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}-\frac{14}{5}m+\frac{49}{25}=3+\frac{49}{25}
Pūruatia -\frac{7}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
m^{2}-\frac{14}{5}m+\frac{49}{25}=\frac{124}{25}
Tāpiri 3 ki te \frac{49}{25}.
\left(m-\frac{7}{5}\right)^{2}=\frac{124}{25}
Tauwehea m^{2}-\frac{14}{5}m+\frac{49}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{7}{5}\right)^{2}}=\sqrt{\frac{124}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m-\frac{7}{5}=\frac{2\sqrt{31}}{5} m-\frac{7}{5}=-\frac{2\sqrt{31}}{5}
Whakarūnātia.
m=\frac{2\sqrt{31}+7}{5} m=\frac{7-2\sqrt{31}}{5}
Me tāpiri \frac{7}{5} ki ngā taha e rua o te whārite.