Tauwehe
\left(m+8\right)\left(5m+3\right)
Aromātai
\left(m+8\right)\left(5m+3\right)
Tohaina
Kua tāruatia ki te papatopenga
5m^{2}+43m+24
Whakarea ka paheko i ngā kīanga tau ōrite.
a+b=43 ab=5\times 24=120
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 5m^{2}+am+bm+24. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,120 2,60 3,40 4,30 5,24 6,20 8,15 10,12
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 120.
1+120=121 2+60=62 3+40=43 4+30=34 5+24=29 6+20=26 8+15=23 10+12=22
Tātaihia te tapeke mō ia takirua.
a=3 b=40
Ko te otinga te takirua ka hoatu i te tapeke 43.
\left(5m^{2}+3m\right)+\left(40m+24\right)
Tuhia anō te 5m^{2}+43m+24 hei \left(5m^{2}+3m\right)+\left(40m+24\right).
m\left(5m+3\right)+8\left(5m+3\right)
Tauwehea te m i te tuatahi me te 8 i te rōpū tuarua.
\left(5m+3\right)\left(m+8\right)
Whakatauwehea atu te kīanga pātahi 5m+3 mā te whakamahi i te āhuatanga tātai tohatoha.
5m^{2}+43m+24
Pahekotia te 40m me 3m, ka 43m.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}