Whakaoti mō a
a=1
a=-1
Tohaina
Kua tāruatia ki te papatopenga
5a^{2}\times 2=3+5+2
Whakareatia te a ki te a, ka a^{2}.
10a^{2}=3+5+2
Whakareatia te 5 ki te 2, ka 10.
10a^{2}=8+2
Tāpirihia te 3 ki te 5, ka 8.
10a^{2}=10
Tāpirihia te 8 ki te 2, ka 10.
a^{2}=\frac{10}{10}
Whakawehea ngā taha e rua ki te 10.
a^{2}=1
Whakawehea te 10 ki te 10, kia riro ko 1.
a=1 a=-1
Tuhia te pūtakerua o ngā taha e rua o te whārite.
5a^{2}\times 2=3+5+2
Whakareatia te a ki te a, ka a^{2}.
10a^{2}=3+5+2
Whakareatia te 5 ki te 2, ka 10.
10a^{2}=8+2
Tāpirihia te 3 ki te 5, ka 8.
10a^{2}=10
Tāpirihia te 8 ki te 2, ka 10.
10a^{2}-10=0
Tangohia te 10 mai i ngā taha e rua.
a=\frac{0±\sqrt{0^{2}-4\times 10\left(-10\right)}}{2\times 10}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 10 mō a, 0 mō b, me -10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\times 10\left(-10\right)}}{2\times 10}
Pūrua 0.
a=\frac{0±\sqrt{-40\left(-10\right)}}{2\times 10}
Whakareatia -4 ki te 10.
a=\frac{0±\sqrt{400}}{2\times 10}
Whakareatia -40 ki te -10.
a=\frac{0±20}{2\times 10}
Tuhia te pūtakerua o te 400.
a=\frac{0±20}{20}
Whakareatia 2 ki te 10.
a=1
Nā, me whakaoti te whārite a=\frac{0±20}{20} ina he tāpiri te ±. Whakawehe 20 ki te 20.
a=-1
Nā, me whakaoti te whārite a=\frac{0±20}{20} ina he tango te ±. Whakawehe -20 ki te 20.
a=1 a=-1
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}