Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5a^{2}-6a+1=12a^{2}-5a-6a
Pahekotia te -a me -5a, ka -6a.
5a^{2}-6a+1=12a^{2}-11a
Pahekotia te -5a me -6a, ka -11a.
5a^{2}-6a+1-12a^{2}=-11a
Tangohia te 12a^{2} mai i ngā taha e rua.
-7a^{2}-6a+1=-11a
Pahekotia te 5a^{2} me -12a^{2}, ka -7a^{2}.
-7a^{2}-6a+1+11a=0
Me tāpiri te 11a ki ngā taha e rua.
-7a^{2}+5a+1=0
Pahekotia te -6a me 11a, ka 5a.
a=\frac{-5±\sqrt{5^{2}-4\left(-7\right)}}{2\left(-7\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -7 mō a, 5 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-5±\sqrt{25-4\left(-7\right)}}{2\left(-7\right)}
Pūrua 5.
a=\frac{-5±\sqrt{25+28}}{2\left(-7\right)}
Whakareatia -4 ki te -7.
a=\frac{-5±\sqrt{53}}{2\left(-7\right)}
Tāpiri 25 ki te 28.
a=\frac{-5±\sqrt{53}}{-14}
Whakareatia 2 ki te -7.
a=\frac{\sqrt{53}-5}{-14}
Nā, me whakaoti te whārite a=\frac{-5±\sqrt{53}}{-14} ina he tāpiri te ±. Tāpiri -5 ki te \sqrt{53}.
a=\frac{5-\sqrt{53}}{14}
Whakawehe -5+\sqrt{53} ki te -14.
a=\frac{-\sqrt{53}-5}{-14}
Nā, me whakaoti te whārite a=\frac{-5±\sqrt{53}}{-14} ina he tango te ±. Tango \sqrt{53} mai i -5.
a=\frac{\sqrt{53}+5}{14}
Whakawehe -5-\sqrt{53} ki te -14.
a=\frac{5-\sqrt{53}}{14} a=\frac{\sqrt{53}+5}{14}
Kua oti te whārite te whakatau.
5a^{2}-6a+1=12a^{2}-5a-6a
Pahekotia te -a me -5a, ka -6a.
5a^{2}-6a+1=12a^{2}-11a
Pahekotia te -5a me -6a, ka -11a.
5a^{2}-6a+1-12a^{2}=-11a
Tangohia te 12a^{2} mai i ngā taha e rua.
-7a^{2}-6a+1=-11a
Pahekotia te 5a^{2} me -12a^{2}, ka -7a^{2}.
-7a^{2}-6a+1+11a=0
Me tāpiri te 11a ki ngā taha e rua.
-7a^{2}+5a+1=0
Pahekotia te -6a me 11a, ka 5a.
-7a^{2}+5a=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{-7a^{2}+5a}{-7}=-\frac{1}{-7}
Whakawehea ngā taha e rua ki te -7.
a^{2}+\frac{5}{-7}a=-\frac{1}{-7}
Mā te whakawehe ki te -7 ka wetekia te whakareanga ki te -7.
a^{2}-\frac{5}{7}a=-\frac{1}{-7}
Whakawehe 5 ki te -7.
a^{2}-\frac{5}{7}a=\frac{1}{7}
Whakawehe -1 ki te -7.
a^{2}-\frac{5}{7}a+\left(-\frac{5}{14}\right)^{2}=\frac{1}{7}+\left(-\frac{5}{14}\right)^{2}
Whakawehea te -\frac{5}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{14}. Nā, tāpiria te pūrua o te -\frac{5}{14} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}-\frac{5}{7}a+\frac{25}{196}=\frac{1}{7}+\frac{25}{196}
Pūruatia -\frac{5}{14} mā te pūrua i te taurunga me te tauraro o te hautanga.
a^{2}-\frac{5}{7}a+\frac{25}{196}=\frac{53}{196}
Tāpiri \frac{1}{7} ki te \frac{25}{196} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(a-\frac{5}{14}\right)^{2}=\frac{53}{196}
Tauwehea a^{2}-\frac{5}{7}a+\frac{25}{196}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{5}{14}\right)^{2}}=\sqrt{\frac{53}{196}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a-\frac{5}{14}=\frac{\sqrt{53}}{14} a-\frac{5}{14}=-\frac{\sqrt{53}}{14}
Whakarūnātia.
a=\frac{\sqrt{53}+5}{14} a=\frac{5-\sqrt{53}}{14}
Me tāpiri \frac{5}{14} ki ngā taha e rua o te whārite.