Whakaoti mō a
a = \frac{\sqrt{55}}{5} \approx 1.483239697
a = -\frac{\sqrt{55}}{5} \approx -1.483239697
Tohaina
Kua tāruatia ki te papatopenga
5a^{2}=4+7
Me tāpiri te 7 ki ngā taha e rua.
5a^{2}=11
Tāpirihia te 4 ki te 7, ka 11.
a^{2}=\frac{11}{5}
Whakawehea ngā taha e rua ki te 5.
a=\frac{\sqrt{55}}{5} a=-\frac{\sqrt{55}}{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
5a^{2}-7-4=0
Tangohia te 4 mai i ngā taha e rua.
5a^{2}-11=0
Tangohia te 4 i te -7, ka -11.
a=\frac{0±\sqrt{0^{2}-4\times 5\left(-11\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 0 mō b, me -11 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\times 5\left(-11\right)}}{2\times 5}
Pūrua 0.
a=\frac{0±\sqrt{-20\left(-11\right)}}{2\times 5}
Whakareatia -4 ki te 5.
a=\frac{0±\sqrt{220}}{2\times 5}
Whakareatia -20 ki te -11.
a=\frac{0±2\sqrt{55}}{2\times 5}
Tuhia te pūtakerua o te 220.
a=\frac{0±2\sqrt{55}}{10}
Whakareatia 2 ki te 5.
a=\frac{\sqrt{55}}{5}
Nā, me whakaoti te whārite a=\frac{0±2\sqrt{55}}{10} ina he tāpiri te ±.
a=-\frac{\sqrt{55}}{5}
Nā, me whakaoti te whārite a=\frac{0±2\sqrt{55}}{10} ina he tango te ±.
a=\frac{\sqrt{55}}{5} a=-\frac{\sqrt{55}}{5}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}