Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5a^{2}=4+7
Me tāpiri te 7 ki ngā taha e rua.
5a^{2}=11
Tāpirihia te 4 ki te 7, ka 11.
a^{2}=\frac{11}{5}
Whakawehea ngā taha e rua ki te 5.
a=\frac{\sqrt{55}}{5} a=-\frac{\sqrt{55}}{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
5a^{2}-7-4=0
Tangohia te 4 mai i ngā taha e rua.
5a^{2}-11=0
Tangohia te 4 i te -7, ka -11.
a=\frac{0±\sqrt{0^{2}-4\times 5\left(-11\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 0 mō b, me -11 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\times 5\left(-11\right)}}{2\times 5}
Pūrua 0.
a=\frac{0±\sqrt{-20\left(-11\right)}}{2\times 5}
Whakareatia -4 ki te 5.
a=\frac{0±\sqrt{220}}{2\times 5}
Whakareatia -20 ki te -11.
a=\frac{0±2\sqrt{55}}{2\times 5}
Tuhia te pūtakerua o te 220.
a=\frac{0±2\sqrt{55}}{10}
Whakareatia 2 ki te 5.
a=\frac{\sqrt{55}}{5}
Nā, me whakaoti te whārite a=\frac{0±2\sqrt{55}}{10} ina he tāpiri te ±.
a=-\frac{\sqrt{55}}{5}
Nā, me whakaoti te whārite a=\frac{0±2\sqrt{55}}{10} ina he tango te ±.
a=\frac{\sqrt{55}}{5} a=-\frac{\sqrt{55}}{5}
Kua oti te whārite te whakatau.