Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5a^{2}-5a-2=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
a=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 5\left(-2\right)}}{2\times 5}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 5 mō te a, te -5 mō te b, me te -2 mō te c i te ture pūrua.
a=\frac{5±\sqrt{65}}{10}
Mahia ngā tātaitai.
a=\frac{\sqrt{65}}{10}+\frac{1}{2} a=-\frac{\sqrt{65}}{10}+\frac{1}{2}
Whakaotia te whārite a=\frac{5±\sqrt{65}}{10} ina he tōrunga te ±, ina he tōraro te ±.
5\left(a-\left(\frac{\sqrt{65}}{10}+\frac{1}{2}\right)\right)\left(a-\left(-\frac{\sqrt{65}}{10}+\frac{1}{2}\right)\right)\geq 0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
a-\left(\frac{\sqrt{65}}{10}+\frac{1}{2}\right)\leq 0 a-\left(-\frac{\sqrt{65}}{10}+\frac{1}{2}\right)\leq 0
Kia ≥0 te otinga, me ≤0 tahi, me ≥0 tahi rānei te a-\left(\frac{\sqrt{65}}{10}+\frac{1}{2}\right) me te a-\left(-\frac{\sqrt{65}}{10}+\frac{1}{2}\right). Whakaarohia te tauira ina he ≤0 tahi te a-\left(\frac{\sqrt{65}}{10}+\frac{1}{2}\right) me te a-\left(-\frac{\sqrt{65}}{10}+\frac{1}{2}\right).
a\leq -\frac{\sqrt{65}}{10}+\frac{1}{2}
Te otinga e whakaea i ngā koreōrite e rua ko a\leq -\frac{\sqrt{65}}{10}+\frac{1}{2}.
a-\left(-\frac{\sqrt{65}}{10}+\frac{1}{2}\right)\geq 0 a-\left(\frac{\sqrt{65}}{10}+\frac{1}{2}\right)\geq 0
Whakaarohia te tauira ina he ≥0 tahi te a-\left(\frac{\sqrt{65}}{10}+\frac{1}{2}\right) me te a-\left(-\frac{\sqrt{65}}{10}+\frac{1}{2}\right).
a\geq \frac{\sqrt{65}}{10}+\frac{1}{2}
Te otinga e whakaea i ngā koreōrite e rua ko a\geq \frac{\sqrt{65}}{10}+\frac{1}{2}.
a\leq -\frac{\sqrt{65}}{10}+\frac{1}{2}\text{; }a\geq \frac{\sqrt{65}}{10}+\frac{1}{2}
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.