Tauwehe
\left(a-3\right)\left(5a-1\right)
Aromātai
\left(a-3\right)\left(5a-1\right)
Tohaina
Kua tāruatia ki te papatopenga
p+q=-16 pq=5\times 3=15
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 5a^{2}+pa+qa+3. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
-1,-15 -3,-5
I te mea kua tōrunga te pq, he ōrite te tohu o p me q. I te mea kua tōraro te p+q, he tōraro hoki a p me q. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 15.
-1-15=-16 -3-5=-8
Tātaihia te tapeke mō ia takirua.
p=-15 q=-1
Ko te otinga te takirua ka hoatu i te tapeke -16.
\left(5a^{2}-15a\right)+\left(-a+3\right)
Tuhia anō te 5a^{2}-16a+3 hei \left(5a^{2}-15a\right)+\left(-a+3\right).
5a\left(a-3\right)-\left(a-3\right)
Tauwehea te 5a i te tuatahi me te -1 i te rōpū tuarua.
\left(a-3\right)\left(5a-1\right)
Whakatauwehea atu te kīanga pātahi a-3 mā te whakamahi i te āhuatanga tātai tohatoha.
5a^{2}-16a+3=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
a=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 5\times 3}}{2\times 5}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-16\right)±\sqrt{256-4\times 5\times 3}}{2\times 5}
Pūrua -16.
a=\frac{-\left(-16\right)±\sqrt{256-20\times 3}}{2\times 5}
Whakareatia -4 ki te 5.
a=\frac{-\left(-16\right)±\sqrt{256-60}}{2\times 5}
Whakareatia -20 ki te 3.
a=\frac{-\left(-16\right)±\sqrt{196}}{2\times 5}
Tāpiri 256 ki te -60.
a=\frac{-\left(-16\right)±14}{2\times 5}
Tuhia te pūtakerua o te 196.
a=\frac{16±14}{2\times 5}
Ko te tauaro o -16 ko 16.
a=\frac{16±14}{10}
Whakareatia 2 ki te 5.
a=\frac{30}{10}
Nā, me whakaoti te whārite a=\frac{16±14}{10} ina he tāpiri te ±. Tāpiri 16 ki te 14.
a=3
Whakawehe 30 ki te 10.
a=\frac{2}{10}
Nā, me whakaoti te whārite a=\frac{16±14}{10} ina he tango te ±. Tango 14 mai i 16.
a=\frac{1}{5}
Whakahekea te hautanga \frac{2}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
5a^{2}-16a+3=5\left(a-3\right)\left(a-\frac{1}{5}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 3 mō te x_{1} me te \frac{1}{5} mō te x_{2}.
5a^{2}-16a+3=5\left(a-3\right)\times \frac{5a-1}{5}
Tango \frac{1}{5} mai i a mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
5a^{2}-16a+3=\left(a-3\right)\left(5a-1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 5 i roto i te 5 me te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}