Whakaoti mō a
a=3
a=-3
Pātaitai
Polynomial
5 a ^ { 2 } = 45
Tohaina
Kua tāruatia ki te papatopenga
a^{2}=\frac{45}{5}
Whakawehea ngā taha e rua ki te 5.
a^{2}=9
Whakawehea te 45 ki te 5, kia riro ko 9.
a^{2}-9=0
Tangohia te 9 mai i ngā taha e rua.
\left(a-3\right)\left(a+3\right)=0
Whakaarohia te a^{2}-9. Tuhia anō te a^{2}-9 hei a^{2}-3^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
a=3 a=-3
Hei kimi otinga whārite, me whakaoti te a-3=0 me te a+3=0.
a^{2}=\frac{45}{5}
Whakawehea ngā taha e rua ki te 5.
a^{2}=9
Whakawehea te 45 ki te 5, kia riro ko 9.
a=3 a=-3
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a^{2}=\frac{45}{5}
Whakawehea ngā taha e rua ki te 5.
a^{2}=9
Whakawehea te 45 ki te 5, kia riro ko 9.
a^{2}-9=0
Tangohia te 9 mai i ngā taha e rua.
a=\frac{0±\sqrt{0^{2}-4\left(-9\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\left(-9\right)}}{2}
Pūrua 0.
a=\frac{0±\sqrt{36}}{2}
Whakareatia -4 ki te -9.
a=\frac{0±6}{2}
Tuhia te pūtakerua o te 36.
a=3
Nā, me whakaoti te whārite a=\frac{0±6}{2} ina he tāpiri te ±. Whakawehe 6 ki te 2.
a=-3
Nā, me whakaoti te whārite a=\frac{0±6}{2} ina he tango te ±. Whakawehe -6 ki te 2.
a=3 a=-3
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}