Whakaoti mō a
a=\frac{2b}{3}
Whakaoti mō b
b=\frac{3a}{2}
Tohaina
Kua tāruatia ki te papatopenga
3a+3b=6a+b
Pahekotia te 5a me -2a, ka 3a.
3a+3b-6a=b
Tangohia te 6a mai i ngā taha e rua.
-3a+3b=b
Pahekotia te 3a me -6a, ka -3a.
-3a=b-3b
Tangohia te 3b mai i ngā taha e rua.
-3a=-2b
Pahekotia te b me -3b, ka -2b.
\frac{-3a}{-3}=-\frac{2b}{-3}
Whakawehea ngā taha e rua ki te -3.
a=-\frac{2b}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
a=\frac{2b}{3}
Whakawehe -2b ki te -3.
3a+3b=6a+b
Pahekotia te 5a me -2a, ka 3a.
3a+3b-b=6a
Tangohia te b mai i ngā taha e rua.
3a+2b=6a
Pahekotia te 3b me -b, ka 2b.
2b=6a-3a
Tangohia te 3a mai i ngā taha e rua.
2b=3a
Pahekotia te 6a me -3a, ka 3a.
\frac{2b}{2}=\frac{3a}{2}
Whakawehea ngā taha e rua ki te 2.
b=\frac{3a}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}