Tauwehe
L\left(5L-14\right)
Aromātai
L\left(5L-14\right)
Tohaina
Kua tāruatia ki te papatopenga
L\left(5L-14\right)
Tauwehea te L.
5L^{2}-14L=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
L=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}}}{2\times 5}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
L=\frac{-\left(-14\right)±14}{2\times 5}
Tuhia te pūtakerua o te \left(-14\right)^{2}.
L=\frac{14±14}{2\times 5}
Ko te tauaro o -14 ko 14.
L=\frac{14±14}{10}
Whakareatia 2 ki te 5.
L=\frac{28}{10}
Nā, me whakaoti te whārite L=\frac{14±14}{10} ina he tāpiri te ±. Tāpiri 14 ki te 14.
L=\frac{14}{5}
Whakahekea te hautanga \frac{28}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
L=\frac{0}{10}
Nā, me whakaoti te whārite L=\frac{14±14}{10} ina he tango te ±. Tango 14 mai i 14.
L=0
Whakawehe 0 ki te 10.
5L^{2}-14L=5\left(L-\frac{14}{5}\right)L
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{14}{5} mō te x_{1} me te 0 mō te x_{2}.
5L^{2}-14L=5\times \frac{5L-14}{5}L
Tango \frac{14}{5} mai i L mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
5L^{2}-14L=\left(5L-14\right)L
Whakakorea atu te tauwehe pūnoa nui rawa 5 i roto i te 5 me te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}