Whakaoti mō n
n = \frac{138}{25} = 5\frac{13}{25} = 5.52
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
5 - n - \frac { 2 } { 25 } = - \frac { 15 } { 25 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{125}{25}-n-\frac{2}{25}=-\frac{15}{25}
Me tahuri te 5 ki te hautau \frac{125}{25}.
\frac{125-2}{25}-n=-\frac{15}{25}
Tā te mea he rite te tauraro o \frac{125}{25} me \frac{2}{25}, me tango rāua mā te tango i ō raua taurunga.
\frac{123}{25}-n=-\frac{15}{25}
Tangohia te 2 i te 125, ka 123.
\frac{123}{25}-n=-\frac{3}{5}
Whakahekea te hautanga \frac{15}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
-n=-\frac{3}{5}-\frac{123}{25}
Tangohia te \frac{123}{25} mai i ngā taha e rua.
-n=-\frac{15}{25}-\frac{123}{25}
Ko te maha noa iti rawa atu o 5 me 25 ko 25. Me tahuri -\frac{3}{5} me \frac{123}{25} ki te hautau me te tautūnga 25.
-n=\frac{-15-123}{25}
Tā te mea he rite te tauraro o -\frac{15}{25} me \frac{123}{25}, me tango rāua mā te tango i ō raua taurunga.
-n=-\frac{138}{25}
Tangohia te 123 i te -15, ka -138.
n=\frac{138}{25}
Me whakarea ngā taha e rua ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}