Whakaoti mō n
n=10.2
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
5 - n - \frac { 2 } { 2.5 } = - \frac { 15 } { 2.5 }
Tohaina
Kua tāruatia ki te papatopenga
5-n-\frac{20}{25}=-\frac{15}{2.5}
Whakarohaina te \frac{2}{2.5} mā te whakarea i te taurunga me te tauraro ki te 10.
5-n-\frac{4}{5}=-\frac{15}{2.5}
Whakahekea te hautanga \frac{20}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{25}{5}-n-\frac{4}{5}=-\frac{15}{2.5}
Me tahuri te 5 ki te hautau \frac{25}{5}.
\frac{25-4}{5}-n=-\frac{15}{2.5}
Tā te mea he rite te tauraro o \frac{25}{5} me \frac{4}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{21}{5}-n=-\frac{15}{2.5}
Tangohia te 4 i te 25, ka 21.
\frac{21}{5}-n=-\frac{150}{25}
Whakarohaina te \frac{15}{2.5} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{21}{5}-n=-6
Whakawehea te 150 ki te 25, kia riro ko 6.
-n=-6-\frac{21}{5}
Tangohia te \frac{21}{5} mai i ngā taha e rua.
-n=-\frac{30}{5}-\frac{21}{5}
Me tahuri te -6 ki te hautau -\frac{30}{5}.
-n=\frac{-30-21}{5}
Tā te mea he rite te tauraro o -\frac{30}{5} me \frac{21}{5}, me tango rāua mā te tango i ō raua taurunga.
-n=-\frac{51}{5}
Tangohia te 21 i te -30, ka -51.
n=\frac{51}{5}
Me whakarea ngā taha e rua ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}