Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5-n^{2}+2\sqrt{0}
Ko te tau i whakarea ki te kore ka hua ko te kore.
5-n^{2}+2\times 0
Tātaitia te pūtakerua o 0 kia tae ki 0.
5-n^{2}+0
Whakareatia te 2 ki te 0, ka 0.
5-n^{2}
Tāpirihia te 5 ki te 0, ka 5.
\frac{\mathrm{d}}{\mathrm{d}n}(5-n^{2}+2\sqrt{0})
Ko te tau i whakarea ki te kore ka hua ko te kore.
\frac{\mathrm{d}}{\mathrm{d}n}(5-n^{2}+2\times 0)
Tātaitia te pūtakerua o 0 kia tae ki 0.
\frac{\mathrm{d}}{\mathrm{d}n}(5-n^{2}+0)
Whakareatia te 2 ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}n}(5-n^{2})
Tāpirihia te 5 ki te 0, ka 5.
2\left(-1\right)n^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-2n^{2-1}
Whakareatia 2 ki te -1.
-2n^{1}
Tango 1 mai i 2.
-2n
Mō tētahi kupu t, t^{1}=t.