Aromātai
5-n^{2}
Kimi Pārōnaki e ai ki n
-2n
Tohaina
Kua tāruatia ki te papatopenga
5-n^{2}+2\sqrt{0}
Ko te tau i whakarea ki te kore ka hua ko te kore.
5-n^{2}+2\times 0
Tātaitia te pūtakerua o 0 kia tae ki 0.
5-n^{2}+0
Whakareatia te 2 ki te 0, ka 0.
5-n^{2}
Tāpirihia te 5 ki te 0, ka 5.
\frac{\mathrm{d}}{\mathrm{d}n}(5-n^{2}+2\sqrt{0})
Ko te tau i whakarea ki te kore ka hua ko te kore.
\frac{\mathrm{d}}{\mathrm{d}n}(5-n^{2}+2\times 0)
Tātaitia te pūtakerua o 0 kia tae ki 0.
\frac{\mathrm{d}}{\mathrm{d}n}(5-n^{2}+0)
Whakareatia te 2 ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}n}(5-n^{2})
Tāpirihia te 5 ki te 0, ka 5.
2\left(-1\right)n^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-2n^{2-1}
Whakareatia 2 ki te -1.
-2n^{1}
Tango 1 mai i 2.
-2n
Mō tētahi kupu t, t^{1}=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}