Whakaoti mō x (complex solution)
x=\sqrt{14}-3\approx 0.741657387
x=-\left(\sqrt{14}+3\right)\approx -6.741657387
Whakaoti mō x
x=\sqrt{14}-3\approx 0.741657387
x=-\sqrt{14}-3\approx -6.741657387
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x^{2}-6x+5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -6 mō b, me 5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-1\right)\times 5}}{2\left(-1\right)}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36+4\times 5}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-6\right)±\sqrt{36+20}}{2\left(-1\right)}
Whakareatia 4 ki te 5.
x=\frac{-\left(-6\right)±\sqrt{56}}{2\left(-1\right)}
Tāpiri 36 ki te 20.
x=\frac{-\left(-6\right)±2\sqrt{14}}{2\left(-1\right)}
Tuhia te pūtakerua o te 56.
x=\frac{6±2\sqrt{14}}{2\left(-1\right)}
Ko te tauaro o -6 ko 6.
x=\frac{6±2\sqrt{14}}{-2}
Whakareatia 2 ki te -1.
x=\frac{2\sqrt{14}+6}{-2}
Nā, me whakaoti te whārite x=\frac{6±2\sqrt{14}}{-2} ina he tāpiri te ±. Tāpiri 6 ki te 2\sqrt{14}.
x=-\left(\sqrt{14}+3\right)
Whakawehe 6+2\sqrt{14} ki te -2.
x=\frac{6-2\sqrt{14}}{-2}
Nā, me whakaoti te whārite x=\frac{6±2\sqrt{14}}{-2} ina he tango te ±. Tango 2\sqrt{14} mai i 6.
x=\sqrt{14}-3
Whakawehe 6-2\sqrt{14} ki te -2.
x=-\left(\sqrt{14}+3\right) x=\sqrt{14}-3
Kua oti te whārite te whakatau.
-x^{2}-6x+5=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-x^{2}-6x+5-5=-5
Me tango 5 mai i ngā taha e rua o te whārite.
-x^{2}-6x=-5
Mā te tango i te 5 i a ia ake anō ka toe ko te 0.
\frac{-x^{2}-6x}{-1}=-\frac{5}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{6}{-1}\right)x=-\frac{5}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+6x=-\frac{5}{-1}
Whakawehe -6 ki te -1.
x^{2}+6x=5
Whakawehe -5 ki te -1.
x^{2}+6x+3^{2}=5+3^{2}
Whakawehea te 6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 3. Nā, tāpiria te pūrua o te 3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+6x+9=5+9
Pūrua 3.
x^{2}+6x+9=14
Tāpiri 5 ki te 9.
\left(x+3\right)^{2}=14
Tauwehea x^{2}+6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{14}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+3=\sqrt{14} x+3=-\sqrt{14}
Whakarūnātia.
x=\sqrt{14}-3 x=-\sqrt{14}-3
Me tango 3 mai i ngā taha e rua o te whārite.
-x^{2}-6x+5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -6 mō b, me 5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-1\right)\times 5}}{2\left(-1\right)}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36+4\times 5}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-6\right)±\sqrt{36+20}}{2\left(-1\right)}
Whakareatia 4 ki te 5.
x=\frac{-\left(-6\right)±\sqrt{56}}{2\left(-1\right)}
Tāpiri 36 ki te 20.
x=\frac{-\left(-6\right)±2\sqrt{14}}{2\left(-1\right)}
Tuhia te pūtakerua o te 56.
x=\frac{6±2\sqrt{14}}{2\left(-1\right)}
Ko te tauaro o -6 ko 6.
x=\frac{6±2\sqrt{14}}{-2}
Whakareatia 2 ki te -1.
x=\frac{2\sqrt{14}+6}{-2}
Nā, me whakaoti te whārite x=\frac{6±2\sqrt{14}}{-2} ina he tāpiri te ±. Tāpiri 6 ki te 2\sqrt{14}.
x=-\left(\sqrt{14}+3\right)
Whakawehe 6+2\sqrt{14} ki te -2.
x=\frac{6-2\sqrt{14}}{-2}
Nā, me whakaoti te whārite x=\frac{6±2\sqrt{14}}{-2} ina he tango te ±. Tango 2\sqrt{14} mai i 6.
x=\sqrt{14}-3
Whakawehe 6-2\sqrt{14} ki te -2.
x=-\left(\sqrt{14}+3\right) x=\sqrt{14}-3
Kua oti te whārite te whakatau.
-x^{2}-6x+5=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-x^{2}-6x+5-5=-5
Me tango 5 mai i ngā taha e rua o te whārite.
-x^{2}-6x=-5
Mā te tango i te 5 i a ia ake anō ka toe ko te 0.
\frac{-x^{2}-6x}{-1}=-\frac{5}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{6}{-1}\right)x=-\frac{5}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+6x=-\frac{5}{-1}
Whakawehe -6 ki te -1.
x^{2}+6x=5
Whakawehe -5 ki te -1.
x^{2}+6x+3^{2}=5+3^{2}
Whakawehea te 6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 3. Nā, tāpiria te pūrua o te 3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+6x+9=5+9
Pūrua 3.
x^{2}+6x+9=14
Tāpiri 5 ki te 9.
\left(x+3\right)^{2}=14
Tauwehea x^{2}+6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{14}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+3=\sqrt{14} x+3=-\sqrt{14}
Whakarūnātia.
x=\sqrt{14}-3 x=-\sqrt{14}-3
Me tango 3 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}