Aromātai
-x^{3}+4x-7
Kimi Pārōnaki e ai ki x
4-3x^{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
6-3x^{3}-3x+2x^{3}+7x-13
Tāpirihia te 5 ki te 1, ka 6.
6-x^{3}-3x+7x-13
Pahekotia te -3x^{3} me 2x^{3}, ka -x^{3}.
6-x^{3}+4x-13
Pahekotia te -3x me 7x, ka 4x.
-7-x^{3}+4x
Tangohia te 13 i te 6, ka -7.
\frac{\mathrm{d}}{\mathrm{d}x}(6-3x^{3}-3x+2x^{3}+7x-13)
Tāpirihia te 5 ki te 1, ka 6.
\frac{\mathrm{d}}{\mathrm{d}x}(6-x^{3}-3x+7x-13)
Pahekotia te -3x^{3} me 2x^{3}, ka -x^{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(6-x^{3}+4x-13)
Pahekotia te -3x me 7x, ka 4x.
\frac{\mathrm{d}}{\mathrm{d}x}(-7-x^{3}+4x)
Tangohia te 13 i te 6, ka -7.
3\left(-1\right)x^{3-1}+4x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-3x^{3-1}+4x^{1-1}
Whakareatia 3 ki te -1.
-3x^{2}+4x^{1-1}
Tango 1 mai i 3.
-3x^{2}+4x^{0}
Tango 1 mai i 1.
-3x^{2}+4\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
-3x^{2}+4
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}