Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6-3x^{3}-3x+2x^{3}+7x-13
Tāpirihia te 5 ki te 1, ka 6.
6-x^{3}-3x+7x-13
Pahekotia te -3x^{3} me 2x^{3}, ka -x^{3}.
6-x^{3}+4x-13
Pahekotia te -3x me 7x, ka 4x.
-7-x^{3}+4x
Tangohia te 13 i te 6, ka -7.
\frac{\mathrm{d}}{\mathrm{d}x}(6-3x^{3}-3x+2x^{3}+7x-13)
Tāpirihia te 5 ki te 1, ka 6.
\frac{\mathrm{d}}{\mathrm{d}x}(6-x^{3}-3x+7x-13)
Pahekotia te -3x^{3} me 2x^{3}, ka -x^{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(6-x^{3}+4x-13)
Pahekotia te -3x me 7x, ka 4x.
\frac{\mathrm{d}}{\mathrm{d}x}(-7-x^{3}+4x)
Tangohia te 13 i te 6, ka -7.
3\left(-1\right)x^{3-1}+4x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-3x^{3-1}+4x^{1-1}
Whakareatia 3 ki te -1.
-3x^{2}+4x^{1-1}
Tango 1 mai i 3.
-3x^{2}+4x^{0}
Tango 1 mai i 1.
-3x^{2}+4\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
-3x^{2}+4
Mō tētahi kupu t, t\times 1=t me 1t=t.