Whakaoti mō y
y=\frac{1}{5}=0.2
Graph
Tohaina
Kua tāruatia ki te papatopenga
5y+5\left(-\frac{1}{5}\right)-2\left(6+y\right)=3\left(4y-5\right)+y
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te y-\frac{1}{5}.
5y-1-2\left(6+y\right)=3\left(4y-5\right)+y
Me whakakore te 5 me te 5.
5y-1-12-2y=3\left(4y-5\right)+y
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te 6+y.
5y-13-2y=3\left(4y-5\right)+y
Tangohia te 12 i te -1, ka -13.
3y-13=3\left(4y-5\right)+y
Pahekotia te 5y me -2y, ka 3y.
3y-13=12y-15+y
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 4y-5.
3y-13=13y-15
Pahekotia te 12y me y, ka 13y.
3y-13-13y=-15
Tangohia te 13y mai i ngā taha e rua.
-10y-13=-15
Pahekotia te 3y me -13y, ka -10y.
-10y=-15+13
Me tāpiri te 13 ki ngā taha e rua.
-10y=-2
Tāpirihia te -15 ki te 13, ka -2.
y=\frac{-2}{-10}
Whakawehea ngā taha e rua ki te -10.
y=\frac{1}{5}
Whakahekea te hautanga \frac{-2}{-10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}