Whakaoti mō x
x = \frac{145}{11} = 13\frac{2}{11} \approx 13.181818182
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x-15+4\left(x+5\right)=20\left(x-7\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x-3.
5x-15+4x+20=20\left(x-7\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+5.
9x-15+20=20\left(x-7\right)
Pahekotia te 5x me 4x, ka 9x.
9x+5=20\left(x-7\right)
Tāpirihia te -15 ki te 20, ka 5.
9x+5=20x-140
Whakamahia te āhuatanga tohatoha hei whakarea te 20 ki te x-7.
9x+5-20x=-140
Tangohia te 20x mai i ngā taha e rua.
-11x+5=-140
Pahekotia te 9x me -20x, ka -11x.
-11x=-140-5
Tangohia te 5 mai i ngā taha e rua.
-11x=-145
Tangohia te 5 i te -140, ka -145.
x=\frac{-145}{-11}
Whakawehea ngā taha e rua ki te -11.
x=\frac{145}{11}
Ka taea te hautanga \frac{-145}{-11} te whakamāmā ki te \frac{145}{11} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}